【題目】已知函數(shù) ,其中.

(1)當時,求函數(shù)的值域;

(2)若對任意,均有,求的取值范圍;

(3)當時,設,若的最小值為,求實數(shù)的值.

【答案】(1);(2) ;(3) .

【解析】試題分析:(1)當a=0時, ,借助換元法及二次函數(shù)圖象及性質即可求函數(shù)g(x)的值域;

(2)分類討論,|f(x)|≤2,可化為,變量分離,構建新函數(shù)求最值,即可求a的取值范圍;

(3)分類討論,利用配方法,結合的最小值為,求實數(shù)a的值.

試題解析:

(1)當時, ,

因為,

所以, 的值域為

(2)若

時, 可化為

,所以

因為為遞增函數(shù),所以函數(shù)的最大值為

因為(當且僅當,即取“”)

所以的取值范圍是.

(3)因為時, ,

,則 ,

時,即, ;

時, ,即,

因為,所以, .

, ,此時

,即,此時,所以實數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,S表示△ABC的面積,若acosB+bcosA=csinC,S= (b2+c2﹣a2),則∠B=(
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角三角形中, , 為線段上一點,且,沿邊上的中線折起到的位置.

(Ⅰ)求證: ;

(Ⅱ)當平面平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足為等比數(shù)列,且

1)求;

2)設,記數(shù)列的前項和為

①求

②求正整數(shù) k,使得對任意均有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ,

1)求證:函數(shù)在點處的切線恒過定點,并求出定點的坐標;

2)若在區(qū)間上恒成立,求的取值范圍;

3)當時,求證:在區(qū)間上,滿足恒成立的函數(shù)有無窮多個.(記

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當x∈[﹣1,0]時,函數(shù)解析式為
(Ⅰ)求f(x)在[0,1]上的解析式;
(Ⅱ)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)是定義在R上的函數(shù),對任意實數(shù)m,n,都有f(m)f(n)=f(m+n),且當x<0時,0<f(x)<1.
(1)證明:①f(0)=1;②當x>0時,f(x)>1;③f(x)是R上的增函數(shù);
(2)設a∈R,試解關于x的不等式f(x2﹣3ax+1)f(﹣3x+6a+1)≤1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四組函數(shù)中表示同一個函數(shù)的是(
A.f(x)=|x|與
B.f(x)=x0與g(x)=1
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=2cos2x+ sin2x﹣1.
(1)求f(x)的最大值及此時的x值
(2)求f(x)的單調減區(qū)間
(3)若x∈[﹣ , ]時,求f(x)的值域.

查看答案和解析>>

同步練習冊答案