12、已知A={a,b,c},B={0,1,2},則滿足條件f(a)+f(b)>f(c)的映射f:A→B有
17
個.
分析:由題設(shè)知f(a)=0,1,2;f(b)=0,1,2;f(c)=0,1,2.當f(c)=0時,滿足條件的映射有8個;當f(c)=1時,滿足條件的映射有6個;當f(c)=2時,滿足條件的映射有3個.
解答:解:f(a)=0,1,2;f(b)=0,1,2;f(c)=0,1,2.
當f(c)=0時,滿足條件的映射有8個:f(c)=0,f(a)=0,f(b)=1;f(c)=0,f(a)=0,f(b)=2;f(c)=0,f(a)=1,f(b)=0;f(c)=0,f(a)=1,f(b)=1;f(c)=0,f(a)=1,f(b)=2;f(c)=0,f(a)=2,f(b)=0;f(c)=0,f(a)=2,f(b)=1;f(c)=0,f(a)=2,f(b)=2.
當f(c)=1時,滿足條件的映射有6個:f(c)=1,f(a)=f(b)=1;f(c)=1,f(a)=2,f(b)=1;f(c)=1,f(a)=1,f(b)=2;f(c)=1,f(a)=2,f(b)=2;f(c)=1,f(a)=2,f(b)=0;f(c)=1,f(a)=0,f(b)=2.
當f(c)=2時,滿足條件的映射有3個:f(c)=2,f(a)=1,f(b)=2;f(c)=2,f(a)=2,f(b)=1;f(c)=2,f(a)=2,f(b)=2.
綜上所述,滿足條件f(a)+f(b)>f(c)的映射f:A→B有17個.
故答案為:17.
點評:本題考查映射的概念,解題時要注意分類討論思想的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
a1
=
1
1
,屬于特征值1的一個特征向量為
a2
=
3
-2
,求矩陣A.
(2)選修4-4:坐標與參數(shù)方程
以直角坐標系的原點為極點,x軸正半軸為極軸,并在兩種坐標系中取相同的長度單位.已知直線l的極坐標方程為psin(θ-
π
3
)=6,圓C的參數(shù)方程為
x=10cosθ
y=10sinθ
,(θ為參數(shù)),求直線l被圓C截得的弦長.
(3)選修4-5:不等式選講
已知實數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a、b、c為直線,α、β、γ為平面,則下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向
a
=(sin(x+
π
6
),
3
cos(x+
π
6
))
,
b
=(sin(x+
π
6
),sin(x+
π
6
))
,記f(x)=
a
b
,在銳角三角形ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,若f(C)=1
(1)求C的大;
(2)若c=
7
,三角形ABC的面積為
3
3
2
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=log2
4
5
,b=(
1
2
)
4
5
,c=lg3,則(  )
A、a<b<c
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

選擇題:

(1)已知,,,則

[  ]

(A)A、B、D三點共線

(B)A、B、C三點共線

(C)BC、D三點共線

(D)A、C、D三點共線

(2)已知正方形ABCD的邊長為1,,,則等于

[  ]

(A)0

(B)3

(C)

(D)

(3)已知,,,且四邊形ABCD為平行四邊形,則

[  ]

(A)abcd0

(B)abcd0

(C)abcd0

(D)abcd0

(4)已知DE、F分別是△ABC的邊BCCA、AB的中點,且,,,則①;②;③;④

中正確的等式的個數(shù)為

[  ]

(A)1

(B)2

(C)3

(D)4

(5)是夾角為60°的兩個單位向量,則;的夾角為

[  ]

(A)30°

(B)60°

(C)120°

(D)150°

(6)若向量a、bc兩兩所成的角相等,且,,則等于

[  ]

(A)2

(B)5

(C)25

(D)

(7)等邊三角形ABC的邊長為1,,,,那么a·bb·cc·a等于

[  ]

(A)3

(B)3

(C)

(D)

查看答案和解析>>

同步練習冊答案