短軸長為,離心率為的橢圓的兩個焦點分別為F1,F(xiàn)2,過F1作直線交橢圓于A,B兩點,則△ABF2的周長為
A.24B.12 C.6D.3
B

試題分析:由已知中短軸長,和離心率的值得到參數(shù)a,b,c的值,分別是a=3,b=2,然后結(jié)合題中條件得到三角形△ABF2的周長為橢圓上點到兩焦點的距離和的2倍,故為4a=12,進(jìn)而求解選B
點評:解決該試題的關(guān)鍵是分析出所求解的三角形的三邊兩邊的和是符合橢圓的定義的,另一邊是焦距,這樣可以求解得到。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓,過點且被點平分的橢圓的弦所在的直線方程是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓錐曲線的離心率e為方程的兩根,則滿足條件的圓錐曲線的條數(shù)為      (    )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分) 已知均在橢圓上,直線分別過橢圓的左、右焦點當(dāng)時,有
(1)求橢圓的方程
(2)設(shè)是橢圓上的任一點,為圓的任一條直徑,求的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

斜率為k的直線過點P(0,1),與雙曲線交于A,B兩點. 
(1)求實數(shù)k的取值范圍;
(2)若以AB為直徑的圓過坐標(biāo)原點,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

點A、B分別是以雙曲線的焦點為頂點,頂點為焦點的橢圓C長軸的左、右端點,點F是橢圓的右焦點,點P在橢圓C上,且位于x軸上方, 
(1)求橢圓C的的方程;
(2)求點P的坐標(biāo);
(3)設(shè)M是橢圓長軸AB上的一點,點M到直線AP的距離等于|MB|,求橢圓上的點到M的距離d的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)過橢圓的一個焦點的直線交橢圓于、兩點,求面積的最大值.(為坐標(biāo)原點)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓,若其長軸在軸上.焦距為,則等于___________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知橢圓的一個焦點與拋物線的焦點重合,P為橢圓與拋物線的一個公共點,且|PF|=2,傾斜角為的直線過點.
(1)求橢圓的方程;
(2)設(shè)橢圓的另一個焦點為,問拋物線上是否存在一點,使得關(guān)于直線對稱,若存在,求出點的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案