【題目】求函數(shù)f(x)=x2+2x+a-1在區(qū)間上的零點(diǎn).
【答案】當(dāng)a>2時(shí),f(x)無(wú)零點(diǎn);
當(dāng)a=2時(shí),f(x)有一個(gè)零點(diǎn)-1;
當(dāng)≤a<2時(shí),f(x)有兩個(gè)零點(diǎn):-1±;
當(dāng)a<時(shí),f(x)有一個(gè)零點(diǎn):-1-.
【解析】
本題考查已知定義域內(nèi)的二次函數(shù)零點(diǎn)問(wèn)題,需要結(jié)合判別式、零點(diǎn)與定義域的位置關(guān)系以及兩零點(diǎn)的符號(hào)綜合判斷零點(diǎn)個(gè)數(shù)以及求出零點(diǎn).
Δ=4-4(a-1)=8-4a.
當(dāng)Δ<0,即a>2時(shí),f(x)無(wú)零點(diǎn).
當(dāng)Δ=0,即a=2時(shí),f(x)有一個(gè)零點(diǎn)-1.
當(dāng)Δ>0且f<0,
即
a<-時(shí),f(x)僅有一個(gè)零點(diǎn):-1-.
當(dāng)Δ>0且f≥0,
即-≤a<2時(shí),
f(x)有兩個(gè)零點(diǎn):x==-1±.
綜上所述,當(dāng)a>2時(shí),f(x)無(wú)零點(diǎn);
當(dāng)a=2時(shí),f(x)有一個(gè)零點(diǎn)-1;
當(dāng)-≤a<2時(shí),f(x)有兩個(gè)零點(diǎn):-1±;
當(dāng)a<-時(shí),f(x)有一個(gè)零點(diǎn):-1-.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】父親節(jié)小明給爸爸從網(wǎng)上購(gòu)買了一雙運(yùn)動(dòng)鞋,就在父親節(jié)的當(dāng)天,快遞公司給小明打電話話說(shuō)鞋子已經(jīng)到達(dá)快遞公司了,馬上可以送到小明家,到達(dá)時(shí)間為晚上6點(diǎn)到7點(diǎn)之間,小明的爸爸晚上5點(diǎn)下班之后需要坐公共汽車回家,到家的時(shí)間在晚上5點(diǎn)半到6點(diǎn)半之間。求小明的爸爸到家之后就能收到鞋子的概率(快遞員把鞋子送到小明家的時(shí)候,會(huì)把鞋子放在小明家門口的“豐巢”中)為 __________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線l1過(guò)點(diǎn)A(0,1),l2過(guò)點(diǎn)B(5,0),如果l1∥l2,且l1與l2的距離為5,求直線l1與l2的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面是邊長(zhǎng)為的正方形,側(cè)面,且,若、分別為、的中點(diǎn).
(1)求證:∥平面;
(2)求證:平面平面.
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),對(duì)任意實(shí)數(shù)t都有f(2+t)=f(2﹣t)成立,則函數(shù)值f(﹣1),f(1),f(2),f(5)中,最小的一個(gè)不可能是( )
A.f(﹣1)
B.f(1)
C.f(2)
D.f(5)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)若F為AB中點(diǎn), ,試確定λ的值,使二面角P﹣FM﹣B的余弦值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知兩直線l1:ax-by+4=0,l2:(a-1)x+y+b=0.求分別滿足下列條件的a,b的值.
(1)直線l1過(guò)點(diǎn)(-3,-1),并且直線l1與l2垂直;
(2)直線l1與直線l2平行,并且坐標(biāo)原點(diǎn)到l1,l2的距離相等.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線與雙曲線的漸近線交于兩點(diǎn),設(shè)為雙曲線上任一點(diǎn),若為坐標(biāo)原點(diǎn)),則下列不等式恒成立的是( 。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨機(jī)抽取某中學(xué)甲、乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com