已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),離心率為
2
2

(1)求橢圓的標準方程;
(2)設(shè)過點F且不與坐標軸垂直的直線l交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點G,求點G的橫坐標的取值范圍.
(1)因為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點為F1(-1,0),
所以c=1,
又因為離心率為
2
2
,
所以a=
2

所以b2=1
所以橢圓的方程為
x2
2
+y2=1
,
(2)設(shè)直線AB的方程為y=k(x+1)(k≠0),
代入
x2
2
+y2=1
,整理得
(1+2k2)x2+4k2x+2k2-2=0.
∵直線AB過橢圓的左焦點F,
∴方程有兩個不等實根.
記A(x1,y1),B(x2,y2),AB中點N(x0,y0),
x1+x2=-
4k2
2k2+1
,
∴AB的垂直平分線NG的方程為 y-y0=-
1
k
(x-x0)

令y=0,得 xG=x0+ky0=-
2k2
2k2+1
+
k2
2k2+1
=-
k2
2k2+1
=-
1
2
+
1
4k2+2

∵k≠0,∴-
1
2
xG<0
,
∴點G橫坐標的取值范圍為 (-
1
2
,0)

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知拋物線y2=2px(p>0)的焦點為F,過F且斜率為
3
直線與拋物線在x軸上方的交點為M,過M作y軸的垂線,垂足為N,O為坐標原點,若四邊形OFMN的面積為4
3

(1)求拋物線的方程;
(2)若P,Q是拋物線上異于原點O的兩動點,且以線段PQ為直徑的圓恒過原點O,求證:直線PQ過定點,并指出定點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)其右準線交x軸于點A,雙曲線虛軸的下端點為B,過雙曲線的右焦點F(c,0)作垂直于x軸的直線交雙曲線于點P,若點D滿足:2
OD
=
OF
+
OP
(O為原點)且
AB
AD
(λ≠0)

(1)求雙曲線的離心率;
(2)若a=2,過點B的直線l交雙曲線于M、N兩點,問在y軸上是否存在定點C,使?
CM
CN
為常數(shù),若存在,求出C點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(文科)一動圓過定點P(0,1),且與定直線l:y=-1相切.
(1)求動圓圓心C的軌跡方程;
(2)若(1)中的軌跡上兩動點記為A(x1,y1),B(x2,y2),且x1x2=-16.
①求證:直線AB過一定點,并求該定點坐標;
②求|PA|+|PB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線x2=4
3
y
的準線過雙曲線
x2
m2
-y2=-1
的一個焦點,則雙曲線的離心率為( 。
A.
3
2
4
B.
6
2
C.
3
D.
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點的雙曲線C的離心率為
2
3
3
,一條準線方程為x=
3
2

(1)求雙曲線C的標準方程
(2)若直線l:y=kx+
2
與雙曲線C恒有兩個不同的交點A和B,且
OA
OB
>2
(其中O為原點),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),
(1)若橢圓的長軸長為4,離心率為
3
2
,求橢圓的標準方程;
(2)在(1)的條件下,設(shè)過定點M(0,2)的直線l與橢圓C交于不同的兩點A,B,且∠AOB為銳角(O為坐標原點),求直線l的斜率k的取值范圍;
(3)過原點O任意作兩條互相垂直的直線與橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)相交于P,S,R,Q四點,設(shè)原點O到四邊形PQSR的一邊距離為d,試求d=1時a,b滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

三角形ABC的兩頂點A(-2,0),B(0,-2),第三頂點C在拋物線y=x2+1上,求三角形ABC的重心G的軌跡.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知P是橢圓
x2
45
+
y2
20
=1
的第三象限內(nèi)一點,且它與兩焦點連線互相垂直,若點P到直線4x-3y-2m+1=0的距離不大于3,則實數(shù)m的取值范圍是( 。
A.[-7,8]B.[-
9
2
,
21
2
]
C.[-2,2]D.(-∞,-7]∪[8,+∞)

查看答案和解析>>

同步練習冊答案