設λ>0,點A的坐標為(1,1),點B在拋物線y=x2上運動,點Q滿足,經過點Q與x軸垂直的直線交拋物線于點M,點P滿足,求點P的軌跡方程.

【答案】分析:設出點的坐標,利用向量的坐標公式求出向量的坐標,代入已知條件中的向量關系得到各點的坐標關系;表示出B點的坐標;將B的坐標代入拋物線方程求出p的軌跡方程.
解答:解:由知Q,M,P三點在同一條垂直于x軸的直線上,故可設P(x,y),Q(x,y),M(x,x2)則
x2-y=λ(y-x2)即y=(1+λ)x2-λy①
再設B(x1,y1)由
將①代入②式得
又點B在拋物線y=x2
將③代入得(1+λ)2x2-λ(1+λ)y-λ=((1+λ)x-λ)2
整理得2λ(1+λ)x-λ(1+λ)y-λ(1+λ)=0因為λ>0所以2x-y-1=0
故所求的點P的軌跡方程:y=2x-1
點評:本題考查題中的向量關系提供點的坐標關系、求軌跡方程的重要方法:相關點法,即求出相關點的坐標,將相關點的坐標代入其滿足的方程,求出動點的軌跡方程.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),定義:設f′′(x)是函數(shù)y=f(x)的導函數(shù)y=f′(x)的導數(shù),若f′′(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.現(xiàn)已知f(x)=x3-3x2+2x-2,請解答下列問題:
(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標;
(Ⅱ)求證f(x)的圖象關于“拐點”A 對稱;并寫出對于任意的三次函數(shù)都成立的有關“拐點”的一個結論(此結論不要求證明);
(Ⅲ)若另一個三次函數(shù)G(x)的“拐點”為B(0,1),且一次項系數(shù)為0,當x1>0,x2>0(x1≠x2)時,試比較
G(x1)+G(x2)
2
G(
x1+x2
2
)
的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網設λ>0,點A的坐標為(1,1),點B在拋物線y=x2上運動,點Q滿足
BQ
QA
,經過點Q與x軸垂直的直線交拋物線于點M,點P滿足
QM
MP
,求點P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

AB
=(3,4)
,點A的坐標為(-1,0),則點B的坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源:安徽省高考真題 題型:解答題

設λ>0,點A的坐標為(1,1),點B在拋物線y=x2上運動,點Q滿足,經過點Q與x軸垂直的直線交拋物線于點M,點P滿足,求點P的軌跡方程。

查看答案和解析>>

同步練習冊答案