直線x-2y-3=0與圓(x-2)2+(y+3)2=9交于E、F兩點(diǎn),則弦長EF=
4
4
分析:由圓的方程找出圓心與半徑r,利用點(diǎn)到直線的距離公式求出圓心到已知直線的距離d,利用垂徑定理及勾股定理即可求出弦EF的長.
解答:解:由圓(x-2)2+(y+3)2=9,得到圓心坐標(biāo)為(2,-3),半徑r=3,
∵圓心(2,-3)到直線x-2y-3=0的距離d=
|2+6-3|
12+(-2)2
=
5

∴弦EF=2
r2-d2
=4.
故答案為:4
點(diǎn)評(píng):此題考查了點(diǎn)到直線的距離公式,直線與圓的位置關(guān)系,垂徑定理及勾股定理,熟練掌握定理及公式是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果直線ax+(1-b)y+5=0和(1+a)x-y-b=0同時(shí)平行于直線x-2y+3=0,則a、b的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓E經(jīng)過點(diǎn)A(2,-3)、B(-2,-5),且圓心在直線x-2y-3=0上.
(1)求圓E的方程;
(2)若直線x+y+m=0與圓E交于P、Q兩點(diǎn),且 EP⊥EQ,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題P:在直角坐標(biāo)平面內(nèi)點(diǎn)M(2,1)與點(diǎn)N(sinα,cosα)(α∈R)落在直線x+2y-3=0的兩側(cè);命題Q:函數(shù)y=log2(ax2-ax+1)的定義域?yàn)镽的充要條件是0≤a≤4,以下結(jié)論正確的是(  )
A、P∧Q為真B、¬P∨Q為真C、P∧¬Q為真D、¬P∧¬Q為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若直線x+2y+3=0被圓x2+y2-2x-2y-7=0所截,則截得的弦的長度是
6
5
5
6
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案