已知定點(diǎn)A(1,0),B (2,0) .動點(diǎn)M滿足
(1)求點(diǎn)M的軌跡C;
(2)若過點(diǎn)B的直線l(斜率不等于零)與(1)中的軌跡C交于不同的兩點(diǎn)E、F
(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
(1)(2)(,1)

試題分析:(1)先對原函數(shù)求導(dǎo),然后求出斜率,再利用 進(jìn)行整理即可.
(2)先設(shè)方程為 與  聯(lián)立,結(jié)合根與系數(shù)的關(guān)系以及判別式得到再由
,即可
(1)由, ∴.∴直線的斜率為
的方程為,∴點(diǎn)A的坐標(biāo)為(1,0).                        (2分)
設(shè),則(1,0),,,由
,整理,得.                 (4分)
(2)方法一:如圖,由題意知的斜率存在且不為零,設(shè)方程為 ①,將①代入,整理,得,設(shè),,則        (7分)

, 則,由此可得 ,
,且.∴    
由②知 ,
,                     (10分)
,∴,解得        (12分)
又∵, ∴,
∴△OBE與△OBF面積之比的取值范圍是(,1).           (13分)
方法二:如圖,由題意知l’的斜率存在且不為零,設(shè)l’ 方程為 ①,將①代入,整理,得,設(shè),,則 ② ;  (7分)
, 則,由此可得 , ,且
                  (10分)
, ∴,解得           (12分)
又∵, ∴
∴△OBE與△OBF面積之比的取值范圍是(,1).      (13分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB為半圓的直徑,P為半圓上一點(diǎn),|AB|=10,∠PAB=a,且sina=
4
5
,建立適當(dāng)?shù)淖鴺?biāo)系.
(1)求A、B為焦點(diǎn)且過P點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.
(2)動圓M過點(diǎn)A,且與以B為圓心,以2
5
為半徑的圓相外切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓的一個焦點(diǎn)為F(0,1),離心率,則橢圓的標(biāo)準(zhǔn)方程為(      ).
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的兩個焦點(diǎn)分別是,若上的點(diǎn)滿足,則橢圓的離心率的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線E上任意一點(diǎn)P到兩個定點(diǎn)F1(-,0)和F2(,0)的距離之和為4.
(1)求曲線E的方程;
(2)設(shè)過點(diǎn)(0,-2)的直線l與曲線E交于C、D兩點(diǎn),且·=0(O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的兩焦點(diǎn)分別為,長軸長為6,
⑴求橢圓C的標(biāo)準(zhǔn)方程;
⑵已知過點(diǎn)(0,2)且斜率為1的直線交橢圓C于A 、B兩點(diǎn),求線段AB的長度。.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓=1的焦點(diǎn)是F1,F(xiàn)2,如果橢圓上一點(diǎn)P滿足PF1⊥PF2,則下面結(jié)論正確的是(  )
A.P點(diǎn)有兩個B.P點(diǎn)有四個
C.P點(diǎn)不一定存在 D.P點(diǎn)一定不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓x2+my2=1的焦點(diǎn)在y軸上,長軸長是短軸長的兩倍,則m的值為(  )
A.B.C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,點(diǎn)在橢圓上.
(1)求橢圓C的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別是A、B,過點(diǎn)的動直線與橢圓交于M,N兩點(diǎn),連接AN、BM相交于G點(diǎn),試求點(diǎn)G的橫坐標(biāo)的值.

查看答案和解析>>

同步練習(xí)冊答案