(1)(選修4-4坐標(biāo)系與參數(shù)方程)已知曲線C的極坐標(biāo)方程是ρ=2sinθ,直線l的參數(shù)方程是
x=-
3
5
t+2
y=
4
5
t
(t為參數(shù)).設(shè)直線l與x軸的交點(diǎn)是M,N是曲線C上一動(dòng)點(diǎn),則|MN|的最大值為
5
+1
5
+1

(2)(選修4-5不等式選講)設(shè)函數(shù)f(x)=|x-1|+|x-2|,若不等式|a+b|+|a-b|≥|a|f(x),(a≠0,a,b∈R)恒成立,則實(shí)數(shù)x的取值范圍是
1
2
≤x≤
5
2
1
2
≤x≤
5
2
分析:(1)首先將曲線C化成普通方程,得出它是以P(0,1)為圓心半徑為1的圓,然后將直線L化成普通方程,得出它與x軸的交點(diǎn)M的坐標(biāo),最后用兩個(gè)點(diǎn)之間的距離公式得出PM的距離,從而得出曲C上一動(dòng)點(diǎn)N到M的最大距離.
(2)先分離出含有a,b的式子,即
1
|a|
(|a+b|+|a-b|)≥f(x)恒成立,問題轉(zhuǎn)化為求左式的最小值即可.
解答:解:(1)∵曲線C的極坐標(biāo)方程ρ=2sinθ,化成普通方程:
x2+y2-2y=0,即x2+(y-1)2=1
∴曲線C表示以點(diǎn)P(0,1)為圓心,半徑為1的圓
∵直L的參數(shù)方程是:
x=-
3
5
t+2
y=
4
5
t

∴直L的普通方程是:4x+3y-8=0
∴可得L與x軸的交點(diǎn)M坐標(biāo)為(2,0)
PM=
(2-0) 2+(0-1) 2
=
5

由此可得曲C上一動(dòng)點(diǎn)N到M的最大距離等于
5
+1

故答案為:
5
+1


(2)化簡得:f(x)=
2x-3(x≥2)
1(1<x<2)
3-2x(x≤1)
,
其圖象如圖所示,
由|a+b|+|a-b|≥|a|f(x)
|a+b|+|a-b|
|a|
≥f(x)

又因?yàn)?span id="z8nhq4z" class="MathJye">
|a+b|+|a-b|
|a|
|a+b+a-b|
|a|
=2
則有2≥f(x)
結(jié)合圖象解不等式:2≥|x-1|+|x-2|
1
2
≤x≤
5
2

故答案為:
1
2
≤x≤
5
2
點(diǎn)評(píng):(1)本題考查了簡單的曲線的極坐標(biāo)方程和參數(shù)方程化為普通方程、以及圓上動(dòng)點(diǎn)到圓外一個(gè)定點(diǎn)的距離最值的知識(shí)點(diǎn).(2)本題主要考查了不等式的恒成立問題,通常采用分離參數(shù)的方法解決,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•葫蘆島模擬)選修4-4:坐標(biāo)系與參數(shù)方程.
在平面直角坐標(biāo)系中,曲線C1的參數(shù)方程為
x=acos?
y=bsin?
(a>b>0,?為參數(shù)),以Ο為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2是圓心在極軸上且經(jīng)過極點(diǎn)的圓,已知曲線C1上的點(diǎn)M(2,
3
)對(duì)應(yīng)的參數(shù)φ=
π
3
;θ=
π
4
;與曲線C2交于點(diǎn)D(
2
,
π
4

(1)求曲線C1,C2的方程;
(2)A(ρ1,θ),Β(ρ2,θ+
π
2
)是曲線C1上的兩點(diǎn),求
1
ρ
2
1
+
1
ρ
2
2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)本題包括A、B、C、D四小題,請(qǐng)選定其中兩題,并在答題卡指定區(qū)域內(nèi)作答,若多做,則按作答的前兩題評(píng)分,解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.
A.[選修4-1:幾何證明選講]
已知△ABC中,AB=AC,D是△ABC外接圓劣弧AC上的點(diǎn)(不與點(diǎn)A,C重合),延長BD至點(diǎn)E.
求證:AD的延長線平分∠CDE
B.[選修4-2:矩陣與變換]
已知矩陣A=
12
-14

(1)求A的逆矩陣A-1;
(2)求A的特征值和特征向量.
C.[選修4-4:坐標(biāo)系與參數(shù)方程]
已知曲線C的極坐標(biāo)方程為ρ=4sinθ,以極點(diǎn)為原點(diǎn),極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l的參數(shù)方程為
x=
1
2
t
y=
3
2
t+1
(t為參數(shù)),求直線l被曲線C截得的線段長度.
D.[選修4-5,不等式選講](本小題滿分10分)
設(shè)a,b,c均為正實(shí)數(shù),求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

附加題:(選做題:在下面A、B、C、D四個(gè)小題中只能選做兩題)
A.選修4-1:幾何證明選講
如圖,已知AB、CD是圓O的兩條弦,且AB是線段CD的垂直平分線,
已知AB=6,CD=2
5
,求線段AC的長度.
B.選修4-2:矩陣與變換
已知二階矩陣A有特征值λ1=1及對(duì)應(yīng)的一個(gè)特征向量e1=
1
1
和特征值λ2=2及對(duì)應(yīng)的一個(gè)特征向量e2=
1
0
,試求矩陣A.
C.選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程是
y=sinθ+1
x=cosθ
(θ是參數(shù)),若以O(shè)為極點(diǎn),x軸的正半軸為極軸,取與直角坐標(biāo)系中相同的單位長度,建立極坐標(biāo)系,求曲線C的極坐標(biāo)方程.
D.選修4-5:不等式選講
已知關(guān)于x的不等式|ax-1|+|ax-a|≥1(a>0).
(1)當(dāng)a=1時(shí),求此不等式的解集;
(2)若此不等式的解集為R,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4~4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=1+tcosα
y=2+tsinα
(t為參數(shù))在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位.且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,圓C的方程為ρ=6sinθ.
(I)求圓C的直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C與直線l交于點(diǎn)A,B.若點(diǎn)P的坐標(biāo)為(1,2),求|PA|+|PB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程)  
在極坐標(biāo)系中,已知圓ρ=asinθ(a>0)與直線ρcos(θ+
π4
)=1相切,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案