設(shè)數(shù)列{an}共有2006項(xiàng),且a1=7,每相鄰的五項(xiàng)的和為33,則滿足上述要求的數(shù)列的所有項(xiàng)的和為

A.13 240        B.13 239            C.13 238            D.13 237

A?

解析:∵a1+a2+a3+a4+a5=33,且每相鄰五項(xiàng)的和為33,?

S2 006=S2 005+a2 006=401×33+7=13 240.選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知:有窮數(shù)列{an}共有2k項(xiàng)(整數(shù)k≥2 ),a1=2,設(shè)該數(shù)列的前n項(xiàng)和為Sn且滿足Sn+1=aSn+2(n=1,2,…,2k-1),a>1.
(1)求{an}的通項(xiàng)公式.
(2)設(shè)bn=log2an,求{bn}的前n項(xiàng)和Tn
(3)設(shè)cn=
Tn
n
,若a=2,求滿足不等式|c1-
3
2
|+|c2-
3
2
|+…+|c2k-1-
3
2
|+|c2k-
3
2
|
36
11
時(shí)k的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知有窮數(shù)列{an}共有2k項(xiàng)(整數(shù)k≥2),首項(xiàng)a1=2.設(shè)該數(shù)列的前n項(xiàng)和為Sn,且an+1=(a-1)Sn+2(n=1,2,…,2k-1),其中常數(shù)a>1.
(1)求證:數(shù)列{an}是等比數(shù)列;
(2)若a=2
2
2k-1
,數(shù)列{bn}滿足bn=
1
n
log2(a1a2an)
(n=1,2,…,2k),求數(shù)列{bn}的通項(xiàng)公式;
(3)若(2)中的數(shù)列{bn}滿足不等式|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知有窮數(shù)列{an}共有2k項(xiàng)(整數(shù)k≥2),首項(xiàng)a1=2,設(shè)該數(shù)列的前n項(xiàng)和為Sn,且Sn=
an+1-2
a-1
(n=1,2,3,…,2k-1),其中常數(shù)a>1.
(1)求{an}的通項(xiàng)公式;
(2)若a=2
2
2k-1
,數(shù)列{bn}滿足bn=
1
n
log2(a1a2an)
,(n=1,2,3,…,2k),求證:1≤bn≤2;
(3)若(2)中數(shù)列{bn}滿足不等式:|b1-
3
2
|+|b2-
3
2
|+…+|b2k-1-
3
2
|+|b2k-
3
2
|≤4
,求k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}是有窮等差數(shù)列,給出下面數(shù)表:上表共有n行,其中第1行的n個(gè)數(shù)為a1,a2,a3,…,an,從第二行起,每行中的每一個(gè)數(shù)都等于它肩上兩數(shù)之和.記表中各行的數(shù)的平均數(shù)(按自上而下的順序)分別為b1,b2,…,bn
(1)求證:數(shù)列b1,b2,…,bn成等比數(shù)列;
(2)若ak=2k-1(k=1,2,…,n),求和
nk=1
akbk
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Tn為數(shù)列{an}的前n項(xiàng)的積,即Tn=a1•a2…an
(1)若Tn=n2,求a3a4a5的值;
(2)若數(shù)列{an}各項(xiàng)都是正數(shù),且滿足Tn=
a
2
n
4
((n∈N*),證明數(shù)列{log2an}為等比數(shù)列,并求{an}的通項(xiàng)公式;
(3)數(shù)列{an}共有100項(xiàng),且滿足以下條件:①a1•a2…a100=2;②等式a1•a2…ak+ak+1•ak+2…a100=k+2對(duì)1≤k≤99,k∈N*恒成立.試問(wèn)符合條件的數(shù)列共有多少個(gè)?為什么?

查看答案和解析>>

同步練習(xí)冊(cè)答案