證明:已知條件可化為(a
n+1+a
n)(a
n+2)+1=0,
即a
n+1=-a
n-
.
(1)①當(dāng)n=1時(shí)已成立;
②假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即-1<a
k<0,
那么當(dāng)n=k+1時(shí),a
k+1=-(a
k+2)-
+2.
∵1<a
k+2<2,又y=t+
在t∈(1,2)內(nèi)為增函數(shù),
∴a
k+2+
∈(2,
),
∴a
k+1∈(-
,0),則-1<a
k+1<0,
∴當(dāng)n=k+1時(shí)結(jié)論成立.
由①②知,對一切n∈N
*均有-1<a
n<0.
(2)①當(dāng)n=1時(shí),a
2=-
>a
1=-
成立;
②假設(shè)當(dāng)n=k(k≥1且k∈N)時(shí)結(jié)論成立,即a
2k>a
2k-1,
∴1<a
2k-1+2<a
2k+2<2,
∴a
2k-1+2+
<a
2k+2+
,
∴-a
2k-1-
>-a
2k-
,即a
2k>a
2k+1.
同上法可得a
2k+2>a
2k+1,
∴當(dāng)n=k+1時(shí)結(jié)論成立.
由①②知對一切n∈N
*均有a
2n>a
2n-1成立.
(3)a
n+1+a
n=-
,則a
n+2+a
n+1=-
.
兩式相減得
a
n+2-a
n=
-
=
.
若把上式中的n換成2n-1,
則a
2n+1-a
2n-1=
>0,
∴數(shù)列{a
2n-1}為遞增數(shù)列.
分析:(1)用數(shù)學(xué)歸納法,①由題設(shè)條件知a
n+1=-a
n-
.當(dāng)n=1時(shí)成立;②假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即-1<a
k<0,那么當(dāng)n=k+1時(shí),a
k+1=-(a
k+2)-
+2.由此導(dǎo)出-1<a
k+1<0,當(dāng)n=k+1時(shí)結(jié)論成立.由①②知,對一切n∈N
*均有-1<a
n<0.
(2)①當(dāng)n=1時(shí),a
2=-
>a
1=-
成立;②假設(shè)當(dāng)n=k(k≥1且k∈N)時(shí)結(jié)論成立,即a
2k>a
2k-1,由此能推導(dǎo)出a
2k+2>a
2k+1,當(dāng)n=k+1時(shí)結(jié)論成立.由①②知對一切n∈N
*均有a
2n>a
2n-1成立.
(3)由a
n+1+a
n=-
,知a
n+2+a
n+1=-
.由此能導(dǎo)出a
2n+1-a
2n-1=
>0,即數(shù)列{a
2n-1}為遞增數(shù)列.
點(diǎn)評:本題考查數(shù)列的綜合性質(zhì)和應(yīng)用,解題時(shí)要認(rèn)真審題,注意數(shù)學(xué)歸綱法的合理運(yùn)用.