(2005•閘北區(qū)一模)設(shè)等差數(shù)列{an}的公差為2,且a10=10,則a1+a2+…+a10=
10
10
分析:根據(jù)等差數(shù)列{an}的公差為2,且a10=10,可求其首項(xiàng),再利用等差數(shù)列的求和求和公式即可.
解答:解:∵等差數(shù)列{an}的公差為2,且a10=10,∴a1=-8,
S10=
(a1+a10)×10
2
=10.
故答案為:10.
點(diǎn)評(píng):本題考查等差數(shù)列的前n項(xiàng)和,著重考查通項(xiàng)公式與求和公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•閘北區(qū)一模)設(shè)f(x)為奇函數(shù),且當(dāng)x>0時(shí),f(x)=log
12
x

(Ⅰ)求當(dāng)x<0時(shí),f(x)的解析表達(dá)式;
(Ⅱ)解不等式f(x)≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•閘北區(qū)一模)已知tan
α
2
=
1
2
,則sinα=
4
5
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•閘北區(qū)一模)設(shè)a、b∈R,則a>b是a2>b2的( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2005•閘北區(qū)一模)設(shè)函數(shù)f(x)=x2(x<0),則f-1(2)的值為
-
2
-
2

查看答案和解析>>

同步練習(xí)冊(cè)答案