已知向量
a
=(
2
,-2)
b
=(sin(
π
4
+2x),cos2x)
(x∈R).設(shè)函數(shù)f(x)=
a
b

(1)求f(-
π
4
)
的值;     
(2)求函數(shù)f(x)在區(qū)間[0,
π
2
]
上的值域.
分析:(1)利用向量的坐標(biāo)運算可求得f(x)=
a
b
,從而可求得f(-
π
4
)的值;
(2)由(1)知f(x)=
2
sin(2x-
π
4
),由x∈[0,
π
2
]⇒2x-
π
4
∈[-
π
4
,
4
],利用正弦函數(shù)的單調(diào)性質(zhì)即可求f(x)在x∈[0,
π
2
]上的值域.
解答:解:(1)∵
a
=(
2
,-2),
b
=(sin(
π
4
+2x),cos2x),
∴f(x)=
a
b

=
2
sin(
π
4
+2x)-2cos2x
=
2
2
2
cos2x+
2
2
sin2x)-2cos2x
=sin2x-cos2x
=
2
sin(2x-
π
4
),
∴f(-
π
4
)=
2
sin(-
4
)=-1;
(2)∵x∈[0,
π
2
],
∴2x-
π
4
∈[-
π
4
,
4
],
∴-
2
2
≤sin(2x-
π
4
)≤1,-1≤
2
sin(2x-
π
4
)≤
2

∴f(x)在x∈[0,
π
2
]上的值域為[-1,
2
].
點評:本題考查平面向量數(shù)量積的坐標(biāo)表示,考查三角函數(shù)中的恒等變換應(yīng)用,考查復(fù)合三角函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,  3),
b
=(-1,  2)
,若m
a
+4
b
a
-2
b
共線,則m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=( 2,  -3 ),?
b
=( 3,  λ )
,若
a
b
,則λ等于( 。
A、
2
3
B、-2
C、-
9
2
D、-
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,4),
b
=(x,1)
,且
a
b
,則x的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(1,k)
,且
a
b
的夾角為銳角,則實數(shù)k的取值范圍是
k>-2且k≠
1
2
k>-2且k≠
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(2,1),
b
=(-1,x),若(
a
+
b
)與(
a
-
b
)共線,x
=
 

查看答案和解析>>

同步練習(xí)冊答案