【題目】如圖,四棱錐的底面是直角梯形, , ,
,點(diǎn)在線段上,且, , 平面.
(1)求證:平面平面;
(2)當(dāng)四棱錐的體積最大時,求四棱錐的表面積.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐V-ABC中,平面VAB平面ABC, VAB為等邊三角形,ACBC且AC=BC=,O,M分別為AB,VA的中點(diǎn)。
(I)求證:VB//平面MOC;
(II)求證:平面MOC平面VAB;
(III)求三棱錐V-ABC的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我們知道:“心有靈犀”一般是對人的心理活動非常融洽的一種描述,它也可以用數(shù)學(xué)來定義:甲、乙兩人都在{1,2,3,4,5,6}中說一個數(shù),甲說的數(shù)記為a,乙說的數(shù)記為b,若|a﹣b|≤1,則稱甲、乙兩人“心有靈犀”,由此可以得到甲、乙兩人“心有靈犀”的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在發(fā)生某公共衛(wèi)生事件期間,有專業(yè)機(jī)構(gòu)認(rèn)為該事件在一段時間沒有發(fā)生大規(guī)模群體感染的標(biāo)準(zhǔn)為“連續(xù)10天,每天新增疑似病例不超過7人”.根據(jù)過去10天甲、乙、丙、丁四地新增疑似病例的數(shù)據(jù),一定符合該標(biāo)準(zhǔn)的是____.(填序號)
①甲地:總體均值為3,中位數(shù)為4
②乙地:總體均值為1,總體方差大于0
③丙地:中位數(shù)為2,眾數(shù)為3
④丁地:總體均值為2,總體方差為3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古希臘杰出的數(shù)學(xué)家丟番圖的墓碑上有這樣一首詩:
這是一座古墓,里面安葬著丟番圖.
請你告訴我,丟番圖的壽數(shù)幾何?
他的童年占去了一生的六分之一,
接著十二分之一是少年時期,
又過了七分之一的時光,他找到了自己的終身伴侶.
五年之后,婚姻之神賜給他一個兒子,
可是兒子不濟(jì),只活到父親壽數(shù)的一半,就匆匆離去.
這對父親是一個沉重的打擊,
整整四年,為失去愛子而悲傷,
終于告別了數(shù)學(xué),離開了人世.
試用循環(huán)結(jié)構(gòu),寫出算法分析和算法程序.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的周期為2的奇函數(shù),當(dāng)0<x<1時,f(x)=2x(1﹣x),則f(﹣ )+f(1)=( )
A.﹣
B.﹣
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋子中放有大小和形狀相同的小球若干個,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球n個.已知從袋子中隨機(jī)抽取1個小球,取到標(biāo)號是2的小球的概率是.
(1)求n的值;
(2)從袋子中不放回地隨機(jī)抽取2個小球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.
①記事件A表示“a+b=2”,求事件A的概率;
②在區(qū)間[0,2]內(nèi)任取2個實數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)矩形ABCD,以A、B為左右焦點(diǎn),并且過C、D兩點(diǎn)的橢圓和雙曲線的離心率之積為( )
A.
B.2
C.1
D.條件不夠,不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項運(yùn)動,得到如下的列聯(lián)表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由 算得, .
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結(jié)論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
B.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
C.有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛好該項運(yùn)動與性別無關(guān)”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com