如圖長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn).

⑴求證:

⑵如果,求的長(zhǎng).

 

【答案】

(1)證明見(jiàn)解析;(2)

【解析】

試題分析:(1)要證線線垂直,一般可先證線面垂直,這個(gè)平面要包含其中一條直線,本題中有許多垂直關(guān)系,如,而平面,因此有平面,正好是平面內(nèi)的直線,問(wèn)題得證;(2)我們采取空間問(wèn)題平面化,所有條件都可在矩形內(nèi),利用平面幾何知識(shí)解題,由于,則有,這兩個(gè)三角形中,有,又,這時(shí)可求出,從而求出的長(zhǎng).

試題解析:(1)是正方形,∴,又長(zhǎng)方體的側(cè)棱平面,∴,

,故有平面,又,∴.        7分

(2)在長(zhǎng)方體中,是矩形,由,得,∴,從而,∴,又底面正方形的邊長(zhǎng)為2,故,,又,∴,從而.        14分

說(shuō)明:用空間向量知識(shí)求解相應(yīng)給分.

考點(diǎn):(1)空間兩直線垂直;(2)求線段長(zhǎng).

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年江蘇阜寧中學(xué)高三上學(xué)期第三次調(diào)研測(cè)試文科數(shù)學(xué)試卷(解析版) 題型:解答題

如圖長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn).

⑴求證:

⑵如果,求的長(zhǎng).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二下期末文科數(shù)學(xué)試卷(解析版) 題型:解答題

 (本小題滿分14分)

如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),,是線段的中點(diǎn).

(1)求證:平面;

(2)求三棱錐D1-ABC的體積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(安徽卷解析版) 題型:解答題

如圖,長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn)。

(Ⅰ)證明: ;

(Ⅱ)如果=2 ,=,, 求 的長(zhǎng)。

 【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,設(shè),由,即,解得,即 的長(zhǎng)為。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省高三第一次月考理科數(shù)學(xué)卷 題型:解答題

(本小題滿分14分)

如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),是線段的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求二面角的大。

                              

 

查看答案和解析>>

同步練習(xí)冊(cè)答案