已知數(shù)列是各項均不為0的等差數(shù)列,公差為,為其前n項和,且滿足,.數(shù)列滿足,, 為數(shù)列的前項和.
(1)求數(shù)列的通項公式;
(2)若對任意的,不等式恒成立,求實數(shù)的取值范圍;
(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有
的值;若不存在,請說明理由.

(1) ;(2);(3)存在,,.

解析試題分析:(1)利用通項公式和求和公式展開解析式,解方程組,得出,寫出解析式;(2)先用裂項相消法求出,再討論的奇數(shù)偶數(shù)兩種情況,利用恒成立解題;(3)先利用等比中項列出表達式,解出.
試題解析:(1)在中,令,
  即               2分
解得,,∴                       3分
又∵時,滿足,∴  4分
(2)∵,    5分
.    6分
①當為偶數(shù)時,要使不等式恒成立,即需不等式恒成立.     7分
,等號在時取得.
此時 需滿足.                        8分
②當為奇數(shù)時,要使不等式恒成立,即需不等式恒成立.
是隨的增大而增大, ∴取得最小值
此時需滿足.                  9分
∴綜合①、②可得的取值范圍是.  10分
(3),,,
成等比數(shù)列,則,         11分

,可得,      12分
,
.                              13分
,且,所以,此時
因此,當且僅當,時,數(shù)列中的成等比數(shù)列.  14分
考點:1.等差數(shù)列的通項公式和求和公式;2.裂項相消法求和;3.等比中項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設無窮等比數(shù)列的公比為q,且,表示不超過實數(shù)的最大整數(shù)(如),記,數(shù)列的前項和為,數(shù)列的前項和為.
(Ⅰ)若,求;
(Ⅱ)證明: )的充分必要條件為
(Ⅲ)若對于任意不超過的正整數(shù)n,都有,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,設
(Ⅰ)試寫出數(shù)列的前三項;
(Ⅱ)求證:數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;
(Ⅲ)設的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列的首項,公比,設數(shù)列的通項公式,數(shù)列,的前項和分別記為,,試比較的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

右表是一個由正數(shù)組成的數(shù)表,數(shù)表中各行依次成等差數(shù)列,各列依次成等比數(shù)列,且公比都相等,已知

(1)求數(shù)列的通項公式;
(2)設求數(shù)列的前項和。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列中,,.
(1)求數(shù)列的通項公式;
(2)若數(shù)列滿足,數(shù)列的前項和為,若不等式對一切恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知等比數(shù)列的各項均為正數(shù),,
(Ⅰ)求數(shù)列的通項公式;
(Ⅱ)設.證明:為等差數(shù)列,并求的前項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列的前項和為,且.
(Ⅰ)求;(Ⅱ)設,求數(shù)列的通項公式。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知數(shù)列滿足: ().
(1)求的值;
(2)求證:數(shù)列是等比數(shù)列;
(3)令,,如果對任意,都有,
求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案