1、已知函數(shù)f(x)=ax+
x-2x+1
(a>1),
求證:(1)函數(shù)f(x)在(-1,+∞)上為增函數(shù);
(2)方程f(x)=0沒有負數(shù)根.
分析:(1)證明函數(shù)的單調(diào)性,一個重要的基本的方法就是根據(jù)函數(shù)單調(diào)性的定義;
(2)對于否定性命題的證明,可用反證法,先假設(shè)方程f(x)=0有負數(shù)根,經(jīng)過層層推理,最后推出一個矛盾的結(jié)論.
解答:證明:(1)設(shè)-1<x1<x2,
f(x1)-f(x2)=ax1+
x1-2
x1+1
-ax2-
x2-2
x2+1

=ax1-ax2+
x1-2
x1+1
-
x2-2
x2+1
=ax1-ax2+
3(x1-x2)
(x1+1)(x2+1)
,
∵-1<x1<x2,∴x1+1>0,x2+1>0,x1-x2<0,
3(x1-x2)
(x1+1)(x2+1)
<0
;
∵-1<x1<x2,且a>1,∴ax1ax2,∴ax1-ax2<0
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函數(shù)f(x)在(-1,+∞)上為增函數(shù);
(2)假設(shè)x0是方程f(x)=0的負數(shù)根,且x0≠-1,則ax0+
x0-2
x0+1
=0
,
ax0=
2-x0
x0+1
=
3-(x0+1)
x0+1
=
3
x0+1
-1
,①
當-1<x0<0時,0<x0+1<1,∴
3
x0+1
>3
,
3
x0+1
-1>2
,而由a>1知ax0<1.∴①式不成立;
當x0<-1時,x0+1<0,∴
3
x0+1
<0
,∴
3
x0+1
-1<-1
,而ax0>0
∴①式不成立.綜上所述,方程f(x)=0沒有負數(shù)根.
點評:本題考查了函數(shù)的單調(diào)性,函數(shù)的單調(diào)性就是隨著x的變大,y在變大就是增函數(shù),y變小就是減函數(shù),具有這樣的性質(zhì)就說函數(shù)具有單調(diào)性,對于結(jié)論是否定形式的命題,往往用反證法證明.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x+1

(1)求證:不論a為何實數(shù)f(x)總是為增函數(shù);
(2)確定a的值,使f(x)為奇函數(shù);
(3)當f(x)為奇函數(shù)時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)圖象經(jīng)過點Q(8,6).
(1)求a的值,并在直線坐標系中畫出函數(shù)f(x)的大致圖象;
(2)求函數(shù)f(t)-9的零點;
(3)設(shè)q(t)=f(t+1)-f(t)(t∈R),求函數(shù)q(t)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
1
2x+1
,若f(x)為奇函數(shù),則a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a(x-1)x2
,其中a>0.
(I)求函數(shù)f(x)的單調(diào)區(qū)間;
(II)若直線x-y-1=0是曲線y=f(x)的切線,求實數(shù)a的值;
(III)設(shè)g(x)=xlnx-x2f(x),求g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定義域;
(2)若f(x)為奇函數(shù),求a的值;
(3)考察f(x)在定義域上單調(diào)性的情況,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案