過橢圓的右焦點F2并垂直于x軸的直線與橢圓的一個交點為B橢圓上不同的兩點A(x1,y1)B(x2,y2)滿足條件:|F2A||F2B||F2C|成等差數(shù)列,則弦AC的中垂線在y軸上的截距的范圍是( )
A.
B.
C.
D.
【答案】分析:使用焦半徑公式求得x1+x2的值,可以設(shè)AC的中垂線方程,代入橢圓方程,使用韋達(dá)定理;也可以用“點差法”:記AC中點M(4,y),將A、C兩點的坐標(biāo)代入橢圓方程后作差,求得AC的斜率表達(dá)式,表示出AC的中垂線方程,把x=0代入求得AC的中垂線在y軸上的截距,根據(jù)M在圓內(nèi)求得y的范圍,進(jìn)而求得的范圍即弦AC的中垂線在y軸上的截距的范圍.
解答:解:對|F2A|+|F2C|=
使用焦半徑公式得:5-x1+5-x2=⇒x1+x2=8.
此后,可以設(shè)AC的中垂線方程,代入橢圓方程,使用韋達(dá)定理;也可以用“點差”:記AC中點M(4,y),將A、C兩點的坐標(biāo)代入橢圓方程后作差得:

∴kAC=-,
于是有:AC的中垂線的方程為:
y-y=(x-4),
當(dāng)x=0時:y=-,此即AC的中垂線在y軸上的截距,
∵M(jìn)(4,y)在橢圓“內(nèi)”,
,
得-<y,
∴-<-
故選:C.
點評:本題主要考查了橢圓的應(yīng)用,直線與橢圓的位置關(guān)系的綜合.當(dāng)直線與圓錐曲線相交時,涉及弦長問題,常用“韋達(dá)定理法”設(shè)而不求計算弦長(即應(yīng)用弦長公式);涉及弦長的中點問題,常用“點差法”設(shè)而不求,將弦所在直線的斜率、弦的中點坐標(biāo)聯(lián)系起來,相互轉(zhuǎn)化.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)過橢圓
x2
25
+
y2
9
=1
的右焦點F2并垂直于x軸的直線與橢圓的一個交點為B,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列,則弦AC的中垂線在y軸上的截距的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以橢圓的右焦點F2為圓心作一個圓,使此圓過橢圓中心O并交橢圓于點M,N,若過橢圓左焦點F1的直線MF1是圓F2的切線,則橢圓的離心率( 。
A、
3
B、
3
+1
C、
3
-1
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

過橢圓數(shù)學(xué)公式的右焦點F2并垂直于x軸的直線與橢圓的一個交點為B,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列,則弦AC的中垂線在y軸上的截距的范圍是 ________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高三數(shù)學(xué)精品復(fù)習(xí)17:拋物線及其性質(zhì)(解析版) 題型:解答題

過橢圓的右焦點F2并垂直于x軸的直線與橢圓的一個交點為B,橢圓上不同的兩點A(x1,y1),C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列,則弦AC的中垂線在y軸上的截距的范圍是    

查看答案和解析>>

同步練習(xí)冊答案