【題目】選修4-5:不等式選講
已知函數(shù),
(1)當時,求不等式的解集;
(2)若不等式的解集為空集,求實數(shù)的取值范圍.
【答案】(1) [0,4];(2) [3,+∞)∪(﹣∞,﹣1].
【解析】試題分析: (1)利用絕對值不等式的解法,去掉絕對值,求解即可.
(2)問題轉(zhuǎn)化為 ,利用絕對值三角不等式直接求解即可.
試題解析:
(Ⅰ)當a=3時,f(x)=|x﹣3|+|x﹣1|,
即有f(x)=,
不等式f(x)≤4即為或或,
即有0≤x<1或3≤x≤4或1≤x<3,
則為0≤x≤4,
則解集為[0,4];
(Ⅱ)依題意知,f(x)=|x﹣a|+|x﹣1|≥2恒成立,
∴2≤f(x)min;
由絕對值三角不等式得:f(x)=|x﹣a|+|x﹣1|≥|(x﹣a)+(1﹣x)|=|1﹣a|,
即f(x)min=|1﹣a|,
∴|1﹣a|≥2,即a﹣1≥2或a﹣1≤﹣2,
解得a≥3或a≤﹣1.
∴實數(shù)a的取值范圍是[3,+∞)∪(﹣∞,﹣1].
科目:高中數(shù)學 來源: 題型:
【題目】交強險是車主必須為機動車購買的險種,若普通6座以下私家車投保交強險第一年的費用(基準保費)統(tǒng)一為元,在下一年續(xù)保時,實行的是費率浮動機制,保費與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費率也就越高,具體浮動情況如表:
交強險浮動因素和浮動費率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生有責任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責任道路交通死亡事故 | 上浮30% |
某機構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
按照我國《機動車交通事故責任強制保險條例》汽車交強險價格的規(guī)定, .某同學家里有一輛該品牌車且車齡剛滿三年,記為該品牌車在第四年續(xù)保時的費用,求的分布列與數(shù)學期望值;(數(shù)學期望值保留到個位數(shù)字)
某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強險保費高于基本保費的車輛記為事故車.假設(shè)購進一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(1,1),過點P動直線l與圓C:x2+y2﹣2y﹣4=0交與點A,B兩點.
(1)若|AB|= ,求直線l的傾斜角;
(2)求線段AB中點M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,內(nèi)角A、B、C對應的邊長分別為a、b、c.已知acosB﹣ b= ﹣ .
(1)求角A;
(2)若a= ,求b+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】用秦九韶算法求多項式f(x)=7x7+6x6+5x5+4x4+3x3+2x2+x,當x=3時的值,并將結(jié)果化為8進制數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的四個頂點組成的四邊形的面積為,且經(jīng)過點.
(1)求橢圓的方程;
(2)若橢圓的下頂點為,如圖所示,點為直線上的一個動點,過橢圓的右焦點的直線垂直于,且與交于兩點,與交于點,四邊形和的面積分別為.求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com