分析 由題意可得:球的半徑R滿足:(2R)2=$(\sqrt{6})^{2}+(\sqrt{6})^{2}+{2}^{2}$,解得R.即可得出.
解答 解:由A、B、C、D為球O上四點,若AB、AC、AD兩兩互相垂直,且AB=AC=$\sqrt{6}$,AD=2,
則球的半徑R滿足:(2R)2=$(\sqrt{6})^{2}+(\sqrt{6})^{2}+{2}^{2}$,解得R=2.
∴球O的體積V=$\frac{4π}{3}×{2}^{3}$=$\frac{32π}{3}$.
故答案為:$\frac{32π}{3}$.
點評 本題考查了長方體的對角線與外接球的直徑之間的關(guān)系、球的體積計算公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0個 | B. | 1個 | C. | 2個 | D. | 3個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\overrightarrow a$?$\overrightarrow b$=$\overrightarrow b$?$\overrightarrow a$ | B. | (k$\overrightarrow a$)?$\overrightarrow b$=$\overrightarrow a$?(k$\overrightarrow b$) | C. | $\overrightarrow a$•($\overrightarrow b$?$\overrightarrow c$)=$\overrightarrow b$•($\overrightarrow a$?$\overrightarrow c$) | D. | |$\overrightarrow a$?$\overrightarrow b$|=$\frac{|\overrightarrow a•\overrightarrow b|}{\overrightarrow b}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [$0\;,\;\frac{π}{6}$) | B. | $(\frac{π}{6}\;,\;π)$ | C. | $(\frac{π}{3}\;,\;π)$ | D. | $(\frac{π}{3}\;,\;π$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com