【題目】如圖,橢圓M: =1(a>b>0)的離心率為 ,直線x=±a和y=±b所圍成的矩形ABCD的面積為8.
(Ⅰ)求橢圓M的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=x+m(m∈R)與橢圓M有兩個不同的交點P,Q,l與矩形ABCD有兩個不同的交點S,T.求 的最大值及取得最大值時m的值.
【答案】解:(I) …①
矩形ABCD面積為8,即2a2b=8…②
由①②解得:a=2,b=1,
∴橢圓M的標(biāo)準(zhǔn)方程是 .
(II) ,
由△=64m2﹣20(4m2﹣4)>0得 .
設(shè)P(x1 , y1),Q(x2 , y2),則 ,
.
當(dāng)l過A點時,m=1,當(dāng)l過C點時,m=﹣1.
①當(dāng) 時,有 , ,
其中t=m+3,由此知當(dāng) ,即 時, 取得最大值 .
②由對稱性,可知若 ,則當(dāng) 時, 取得最大值 .
③當(dāng)﹣1≤m≤1時, , ,
由此知,當(dāng)m=0時, 取得最大值 .
綜上可知,當(dāng) 或m=0時, 取得最大值
【解析】(Ⅰ)通過橢圓的離心率,矩形的面積公式,直接求出a,b,然后求橢圓M的標(biāo)準(zhǔn)方程;(Ⅱ) 通過
【考點精析】關(guān)于本題考查的橢圓的標(biāo)準(zhǔn)方程,需要了解橢圓標(biāo)準(zhǔn)方程焦點在x軸:,焦點在y軸:才能得出正確答案.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, 分別為等差數(shù)列和等比數(shù)列, , 的前項和為.函數(shù)的導(dǎo)函數(shù)是,有,且是函數(shù)的零點.
(1)求的值;
(2)若數(shù)列公差為,且點,當(dāng)時所有點都在指數(shù)函數(shù)的圖象上.
請你求出解析式,并證明: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在測試中,客觀題難題的計算公式為,其中為第題的難度, 為答對該題的人數(shù), 為參加測試的總?cè)藬?shù).現(xiàn)對某校高三年級120名學(xué)生進行一次測試,共5道客觀題.測試前根據(jù)對學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
測試后,從中隨機抽取了10名學(xué)生,將他們編號后統(tǒng)計各題的作答情況,如下表所示(“√”表示答對,“×”表示答錯):
(1)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實測的答對人數(shù)及相應(yīng)的實測難度填入下表,并估計這120名學(xué)生中第5題的實測答對人數(shù);
(2)從編號為1到5的5人中隨機抽取2人,求恰好有1人答對第5題的概率;
(3)定義統(tǒng)計量,其中為第題的實測難度, 為第題的預(yù)估難度().規(guī)定:若,則稱該次測試的難度預(yù)估合理,否則為不合理.判斷本次測試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)= 的定義域為( )
A.(﹣1,1]
B.(﹣1,0)∪(0,1]
C.(﹣1,1)
D.(﹣1,0)∪(0,1)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB=1,AC=2,BC= ,D,E分別是AC1和BB1的中點,則直線DE與平面BB1C1C所成的角為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知曲線,曲線, 是平面上一點,若存在過點的直線與都有公共點,則稱為“型點”.
(1)證明: 的左焦點是“型點”;
(2)設(shè)直線與有公共點,求證: ,進而證明原點不是“型點”;
(3)求證: 內(nèi)的點都不是“型點”.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知O為坐標(biāo)原點,雙曲線C: =1(a>0,b>0)的左焦點為F(﹣c,0)(c>0),以O(shè)F為直徑的圓交雙曲線C的漸近線于A,B,O三點,且( + ) =0,若關(guān)于x的方程ax2+bx﹣c=0的兩個實數(shù)根分別為x1和x2 , 則以|x1|,|x2|,2為邊長的三角形的形狀是( )
A.鈍角三角形
B.直角三角形
C.銳角三角形
D.等腰直角三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)ω>0,函數(shù)y=sin(ωx+ )+2的圖象向右平移 個單位后與原圖象重合,則ω的最小值是( )
A.
B.
C.
D.3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com