【題目】如圖(1),在平面六邊形中,四邊形是矩形,且, , ,點(diǎn) 分別是, 的中點(diǎn),分別沿直線, , 翻折成如圖(2)的空間幾何體

Ⅰ)利用下列結(jié)論1或結(jié)論2,證明: 、、、四點(diǎn)共面;

結(jié)論1:過(guò)空間一點(diǎn)作已知直線的垂面,有且僅有一個(gè).

結(jié)論2:過(guò)平面內(nèi)一條直線作該平面的垂面,有且僅有一個(gè).

Ⅱ)若二面角和二面角都是,求三棱錐的體積.

【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ) .

【解析】試題分析:1分別作點(diǎn)E,F在底面ABCD的身影為P,Q,即。由結(jié)論2可證。(2)由(1)中可知二面角和二面角都是,即,且。

試題解析:(Ⅰ)由題意,點(diǎn)在底面的射影在上,可設(shè)為點(diǎn),同理,點(diǎn)在底面的射影在上,可設(shè)為點(diǎn),則 , ,面,又, ,由結(jié)論2:過(guò)平面內(nèi)一條直線作該平面的垂面,有且僅有一個(gè),則、、、四點(diǎn)共面.

(Ⅱ)若二面角和二面角都是,則,易得,則 ,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的參數(shù)方程為,其中為參數(shù),且在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸建立極坐標(biāo)系.

1)求曲線的極坐標(biāo)方程;

2)設(shè)是曲線上的一點(diǎn),直線被曲線截得的弦長(zhǎng)為,求點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的極值;

(2)求證: ;

(3)若對(duì)于任意的,恒有成立,求的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)(其中,,)的圖象與軸的交點(diǎn)中,相鄰兩個(gè)交點(diǎn)之間的距離為,且圖象上一個(gè)最高點(diǎn)為

1)求的解析式;

2)先把函數(shù)的圖象向左平移個(gè)單位長(zhǎng)度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)的圖象,試寫出函數(shù)的解析式.

3)在(2)的條件下,若存在,使得不等式成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

(I)求的單調(diào)區(qū)間;

(II)當(dāng)0<a<2時(shí),求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)某大學(xué)的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關(guān)關(guān)系,根據(jù)一組樣本數(shù)據(jù)(xi,yi)(i=1,2,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是

A. yx具有正的線性相關(guān)關(guān)系

B. 回歸直線過(guò)樣本點(diǎn)的中心(

C. 若該大學(xué)某女生身高增加1cm,則其體重約增加0.85kg

D. 若該大學(xué)某女生身高為170cm,則可斷定其體重比為58.79kg

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個(gè)分點(diǎn)

(1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

(2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】同時(shí)拋擲兩枚骰子,并記下二者向上的點(diǎn)數(shù),求:

二者點(diǎn)數(shù)相同的概率;

兩數(shù)之積為奇數(shù)的概率;

二者的數(shù)字之和不超過(guò)5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修44:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為

為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)

方程是.

(1)寫出直線的普通方程和曲線的直角坐標(biāo)方程;

(2)已知點(diǎn).若點(diǎn)的極坐標(biāo)為,直線經(jīng)過(guò)點(diǎn)且與曲線相交于兩點(diǎn),求兩點(diǎn)間的距離的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案