【題目】已知橢圓的右焦點(diǎn)為,離心率為。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是橢圓上不同的三點(diǎn),若直線的斜率之積為,試問(wèn)從兩點(diǎn)的橫坐標(biāo)之和是否為定值?若是,求出這個(gè)定值;若不是,請(qǐng)說(shuō)明理由。
【答案】(1)(2)兩點(diǎn)的橫坐標(biāo)之和為0,詳見(jiàn)解析
【解析】
(1)先由題中條件,得到,再由離心率求出,得到,進(jìn)而可得橢圓方程;
(2)設(shè)三點(diǎn)坐標(biāo)分別為,直線的斜率分別為,得到直線的方程為:,聯(lián)立直線與橢圓方程,根據(jù)韋達(dá)定理表示出與,再結(jié)合,即可得到結(jié)果.
(1)由橢圓的右焦點(diǎn)得,
又離心率得,
所以橢圓的標(biāo)準(zhǔn)方程為:
(2)兩點(diǎn)的橫坐標(biāo)之和為0,理由如下
設(shè)三點(diǎn)坐標(biāo)分別為,直線的斜率分別為,
則直線的方程為:,
由方程組,消去得:
,
,
故,同理可得:,
又,即,
從而,
即兩點(diǎn)的橫坐標(biāo)之和為常數(shù)零
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)若.
(。┣蠛瘮(shù)的極小值;
(ⅱ)求函數(shù)在點(diǎn)處的切線方程.
(Ⅱ)若函數(shù)在上有極值,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線C:,其焦點(diǎn)到準(zhǔn)線的距離為2,直線l與拋物線C交于A,B兩點(diǎn),過(guò)A,B分別作拋物線C的切線,交于點(diǎn)M
(Ⅰ)求拋物線C的方程
(Ⅱ)若,求三角形面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=||,實(shí)數(shù)m,n滿足0<m<n,且f(m)=f(n),若f(x)在[m2,n]上的最大值為2,則=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年6月14日,世界杯足球賽在俄羅斯拉開(kāi)帷幕,世界杯給俄羅斯經(jīng)濟(jì)帶來(lái)了一定的增長(zhǎng),某紀(jì)念商品店的銷售人員為了統(tǒng)計(jì)世界杯足球賽期間商品的銷售情況,隨機(jī)抽查了該商品商店某天200名顧客的消費(fèi)金額情況,得到如圖頻率分布表:將消費(fèi)顧客超過(guò)4萬(wàn)盧布的顧客定義為”足球迷”,消費(fèi)金額不超過(guò)4萬(wàn)盧布的顧客定義為“非足球迷”。
消費(fèi)金額/萬(wàn)盧布 | 合計(jì) | ||||||
顧客人數(shù) | 9 | 31 | 36 | 44 | 62 | 18 | 200 |
(1)求這200名顧客消費(fèi)金額的中位數(shù)與平均數(shù)(同一組中的消費(fèi)金額用該組的中點(diǎn)值作代表;
(2)該紀(jì)念品商店的銷售人員為了進(jìn)一步了解這200名顧客喜歡紀(jì)念品的類型,采用分層抽樣的方法從“非足球迷”,“足球迷”中選取5人,再?gòu)倪@5人中隨機(jī)選取3人進(jìn)行問(wèn)卷調(diào)查,則選取的3人中“非足球迷”人數(shù)的分布列和數(shù)學(xué)期望。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“大眾創(chuàng)業(yè),萬(wàn)眾創(chuàng)新”是李克強(qiáng)總理在本屆政府工作報(bào)告中向全國(guó)人民發(fā)出的口號(hào).共生產(chǎn)企業(yè)積極響應(yīng)號(hào)召,大力研發(fā)新產(chǎn)品,為了對(duì)新研發(fā)的一批產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到一組銷售數(shù)據(jù),如表所示:
試銷單價(jià)(元) | 4 | 5 | 6 | 7 | 8 | 9 |
產(chǎn)品銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
已知,.
(1)已知變量,只有線性相關(guān)關(guān)系,求產(chǎn)品銷量(件)關(guān)于試銷單價(jià)(元)的線性回方程;
(2)用表示用(Ⅱ)中所求的線性回歸方程得到的與對(duì)應(yīng)的產(chǎn)品銷量的估計(jì)值.當(dāng)銷售數(shù)據(jù)對(duì)應(yīng)的差的絕對(duì)值時(shí),則將售數(shù)數(shù)稱為一個(gè)“好數(shù)據(jù)”.現(xiàn)從6小銷售數(shù)據(jù)中任取2個(gè);求“好數(shù)據(jù)”至少有一個(gè)的概率.
(參考公式:線性回歸方程中的最小二乘估計(jì)分別為,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)定義且為常數(shù)),若 , .下述四個(gè)命題:
① 不存在極值;
②若函數(shù) 與函數(shù) 的圖象有兩個(gè)交點(diǎn),則 ;
③若在 上是減函數(shù),則實(shí)數(shù) 的取值范圍是 ;
④若 ,則在的圖象上存在兩點(diǎn),使得在這兩點(diǎn)處的切線互相垂直
A. ①③④B. ②③④C. ②③D. ②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是( )
A.命題“若,則”的逆否命題是“若,則”
B.“”是“”的充分不必要條件
C.若為假命題,則、均為假命題
D.命題:“,使得”,則非:“,”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為踐行“綠水青山就是金山銀山”的發(fā)展理念,某城區(qū)對(duì)轄區(qū)內(nèi),,三類行業(yè)共200個(gè)單位的生態(tài)環(huán)境治理成效進(jìn)行了考核評(píng)估,考評(píng)分?jǐn)?shù)達(dá)到80分及其以上的單位被稱為“星級(jí)”環(huán)保單位,未達(dá)到80分的單位被稱為“非星級(jí)”環(huán)保單位.現(xiàn)通過(guò)分層抽樣的方法獲得了這三類行業(yè)的20個(gè)單位,其考評(píng)分?jǐn)?shù)如下:
類行業(yè):85,82,77,78,83,87;
類行業(yè):76,67,80,85,79,81;
類行業(yè):87,89,76,86,75,84,90,82.
(Ⅰ)計(jì)算該城區(qū)這三類行業(yè)中每類行業(yè)的單位個(gè)數(shù);
(Ⅱ)若從抽取的類行業(yè)這6個(gè)單位中,再隨機(jī)選取3個(gè)單位進(jìn)行某項(xiàng)調(diào)查,求選出的這3個(gè)單位中既有“星級(jí)”環(huán)保單位,又有“非星級(jí)”環(huán)保單位的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com