(10分)不等式,當(dāng)時(shí)恒成立.求的取值范圍.
。
【解析】
試題分析:由已知得 ....................1分
(1)當(dāng)時(shí)
則 ................2分
① ......................3分
.....................4分
①式無實(shí)數(shù)解....................................5分
(2)當(dāng)時(shí)
則
......................6分
................7分
......................8分
..............9分
綜合以上兩種情況可知。 ....................10分
考點(diǎn):本題主要考查對數(shù)函數(shù)的性質(zhì)及其應(yīng)用,二次函數(shù)圖象和性質(zhì)。
點(diǎn)評:典型題,復(fù)合對數(shù)函數(shù)問題,應(yīng)特別注意其自身定義域。本題首先化成關(guān)于對數(shù)函數(shù)的二次函數(shù),利用二次函數(shù)圖象和性質(zhì)得到所求范圍。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江西九江市等七校高三聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知向量,
(Ⅰ)當(dāng)時(shí),求函數(shù)的值域;
(Ⅱ)不等式≤,當(dāng)時(shí)恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù),,
(1)求函數(shù)的極值;
(2)不等式,當(dāng)時(shí)恒成立,求的值;
(3)證明:。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com