設(shè)銳角三角形ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,a=2bsinA
(Ⅰ)求B的大;
(Ⅱ)求cosA+sinC的取值范圍.
分析:(1)先利用正弦定理求得sinB的值,進(jìn)而求得B.
(2)把(1)中求得B代入cosA+sinC中利用兩角和公式化簡整理,進(jìn)而根據(jù)A的范圍和正弦函數(shù)的性質(zhì)求得cosA+sinC的取值范圍.
解答:解:(Ⅰ)由a=2bsinA,根據(jù)正弦定理得sinA=2sinBsinA,
所以
sinB=,
由△ABC為銳角三角形得
B=.
(Ⅱ)
cosA+sinC=cosA+sin(π--A)=
cosA+sin(+A)=
cosA+cosA+sinA=
sin(A+).
由△ABC為銳角三角形知,0<A<
.
<A+<,
所以
<sin(A+)< .
由此有
<sin(A+)<×=,
所以,cosA+sinC的取值范圍為
(,).
點(diǎn)評(píng):本題主要考查了正弦定理得應(yīng)用和三角函數(shù)中兩角和公式的運(yùn)用.涉及了正弦函數(shù)的性質(zhì),考查了學(xué)生對(duì)三角函數(shù)知識(shí)的把握.