【題目】已知是常數(shù).

(Ⅰ)求曲線在點(diǎn)處的切線方程;

(Ⅱ)設(shè),討論函數(shù)的單調(diào)性.

【答案】(Ⅰ) ; (Ⅱ)單調(diào)遞增,在單調(diào)遞減.

【解析】試題分析: (Ⅰ) 把x=1代入解析式求出切點(diǎn)坐標(biāo),對(duì)函數(shù)進(jìn)行求導(dǎo)得到斜率,根據(jù)點(diǎn)斜式寫出切線方程;(Ⅱ)把代入得到,求出函數(shù)的導(dǎo)數(shù),再進(jìn)行配方判斷導(dǎo)函數(shù)的正負(fù),按照極值點(diǎn)是否在定義域內(nèi)分四類進(jìn)行討論,得出函數(shù)的單調(diào)性.

試題解析:(Ⅰ) 因?yàn)?/span>,所以,故曲線在點(diǎn)處的切線方程為

(Ⅱ)因?yàn)?/span>

所以

①當(dāng)時(shí), 單調(diào)遞增;

②當(dāng)時(shí), 單調(diào)遞增,在單調(diào)遞減;

③當(dāng)時(shí),由

所以, 單調(diào)遞增,在單調(diào)遞減;

④當(dāng)時(shí),由

舍去)

所以, 單調(diào)遞增,在單調(diào)遞減.

點(diǎn)睛:本題考查導(dǎo)數(shù)的幾何意義和函數(shù)單調(diào)性的判斷問題的綜合應(yīng)用,屬于中檔題目. 函數(shù)yf(x)在xx0處的導(dǎo)數(shù)的幾何意義,就是曲線yf(x)在點(diǎn)P(x0,y0)處的切線的斜率 ,過點(diǎn)P的切線方程為: ,求函數(shù)yf(x)在點(diǎn)P(x0,y0)處的切線方程與求函數(shù)yf(x)過點(diǎn)P(x0y0)的切線方程意義不同,前者切線有且只有一條,且方程為yy0f′(x0)(xx0),后者可能不只一條.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的首項(xiàng),

1)證明:數(shù)列是等比數(shù)列;

2)數(shù)列的前項(xiàng)和

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)又本l:(m+3)x-(m+2)ym=0與圓C:(x-3)2+(y-4)2=9.

(1)求證:無論m為何值,直線l與圓C總相交.

(2)求直線l被圓C所截得的弦長(zhǎng)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解學(xué)生的體能情況,某校抽取部分學(xué)生進(jìn)行一分鐘跳繩次數(shù)測(cè)試,所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖所示),圖中從左到右各小長(zhǎng)方形面積之比為,第二小組頻數(shù)為.

(1)學(xué)生跳繩次數(shù)的中位數(shù)落在哪個(gè)小組內(nèi)?

(2)第二小組的頻率是多少?樣本容量是多少?

(3)若次數(shù)在以上(含次)為良好,試估計(jì)該學(xué)校全體高一學(xué)生的良好率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某連鎖經(jīng)營(yíng)公司所屬5個(gè)零售店某月的銷售額和利潤(rùn)額資料如下表:

(1)若銷售額和利潤(rùn)額具有相關(guān)關(guān)系,用最小二乘法計(jì)算利潤(rùn)額y對(duì)銷售額x的回歸直線方程;

(2)據(jù)(1)的結(jié)果估計(jì)當(dāng)銷售額為1億元時(shí)的利潤(rùn)額.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn),直線,設(shè)圓的半徑為1且關(guān)于直線l對(duì)稱.

(1)若圓心在直線上,過點(diǎn)作圓的切線,求切線的方程;

(2)點(diǎn)關(guān)于點(diǎn)的對(duì)稱點(diǎn)為B,若圓上存在點(diǎn),使,求圓心的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A過定點(diǎn)且與圓相切,記動(dòng)圓圓心的軌跡為曲線.

(1)求曲線的方程;

(2)過點(diǎn)且斜率不為零的直線交曲線, 兩點(diǎn),在軸上是否存在定點(diǎn),使得直線的斜率之積為非零常數(shù)?若存在,求出定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(理科)某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生的課外體育鍛煉平均每天運(yùn)動(dòng)的時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

將學(xué)生日均課外體育運(yùn)動(dòng)時(shí)間在上的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

(1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并通過計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為 “課外體育達(dá)標(biāo)”與性別有關(guān)?

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該校高三學(xué)生中,抽取3名學(xué)生,記被抽取的3名學(xué)生中的“課外體育達(dá)標(biāo)”學(xué)生人數(shù)為,若每次抽取的結(jié)果是相互獨(dú)立的,求的數(shù)學(xué)期望.

獨(dú)立性檢驗(yàn)界值表:

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知五邊形是由直角梯形和等腰直角三角形構(gòu)成,如圖所示, , , ,且,將五邊形沿著折起,且使平面平面.

(Ⅰ)若中點(diǎn),邊上是否存在一點(diǎn),使得平面?若存在,求的值;若不存在,說明理由;

(Ⅱ)求二面角的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案