【題目】已知橢圓的長(zhǎng)軸長(zhǎng)為,焦距為2,拋物線的準(zhǔn)線經(jīng)過的左焦點(diǎn).
(1)求與的方程;
(2)直線經(jīng)過的上頂點(diǎn)且與交于,兩點(diǎn),直線,與分別交于點(diǎn)(異于點(diǎn)),(異于點(diǎn)),證明:直線的斜率為定值.
【答案】(1)的方程為,的方程為.(2)證明見解析
【解析】
(1)長(zhǎng)軸長(zhǎng)為,焦距為,在橢圓中,求出的值,寫出橢圓方程;寫出拋物線的準(zhǔn)線方程,代入點(diǎn)坐標(biāo),求出的值,寫出拋物線方程.
(2)先探究直線的斜率是否存在,寫出直線方程,再與曲線方程聯(lián)立求解.
(1)解:由題意,得,,所以,,所以,所以的方程為,
所以,由于的準(zhǔn)線經(jīng)過點(diǎn),所以,
所以,故的方程為.
(2)證明:由題意知,的斜率存在,故設(shè)直線的方程為,
由,得.
設(shè),,則,
即且,,.
又直線的方程為,
由得,
所以,所以,從而的坐標(biāo)為.
同理可得的坐標(biāo)為,
所以為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn),直線與曲線交于兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
對(duì)函數(shù)Φ(x),定義fk(x)=Φ(x-mk)+nk(其中x∈(mk,m+mk],k∈Z,m>0,n>0,且m、n為常數(shù))為Φ(x)的第k階階梯函數(shù),m叫做階寬,n叫做階高,已知階寬為2,階高為3.
(1)當(dāng)Φ(x)=2x時(shí) ①求f0(x)和fk(x)的解析式; ②求證:Φ(x)的各階階梯函數(shù)圖象的最高點(diǎn)共線;
(2)若Φ(x)=x2,則是否存在正整數(shù)k,使得不等式fk(x)<(1-3k)x+4k2+3k-1有解?若存在,求出k的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班級(jí)有3名同學(xué)報(bào)名參加學(xué)校組織的辯論賽,現(xiàn)有甲、乙兩個(gè)辨題可以選擇,學(xué)校決定讓選手以抽取卡片(除上面標(biāo)的數(shù)不同外其他完全相同)的方式選擇辯題,且每名選手抽取后放回.已知共有10張卡片,卡片上分別標(biāo)有共10個(gè)數(shù).若抽到卡片上的數(shù)為質(zhì)數(shù)(2,3,5,7),則選擇甲辨題,否則選擇乙辯題.
(1)求這3名同學(xué)中至少有1人選擇甲辨題的概率.
(2)用X、Y分別表示這3名同學(xué)中選擇甲、乙辨題的人數(shù),求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓方程(),,是橢圓的左右焦點(diǎn),以,及橢圓短軸的一個(gè)端點(diǎn)為頂點(diǎn)的三角形是面積為的正三角形.
(1)求橢圓方程;
(2)過分別作直線,,且,設(shè)與橢圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】撫州市某中學(xué)利用周末組織教職員工進(jìn)行了一次秋季登軍峰山健身的活動(dòng),有人參加,現(xiàn)將所有參加人員按年齡情況分為,,,,,,等七組,其頻率分布直方圖如下圖所示.已知之間的參加者有4人.
(1)求和之間的參加者人數(shù);
(2)組織者從之間的參加者(其中共有名女教師包括甲女,其余全為男教師)中隨機(jī)選取名擔(dān)任后勤保障工作,求在甲女必須入選的條件下,選出的女教師的人數(shù)為2人的概率.
(3)已知和之間各有名數(shù)學(xué)教師,現(xiàn)從這兩個(gè)組中各選取人擔(dān)任接待工作,設(shè)兩組的選擇互不影響,求兩組選出的人中都至少有名數(shù)學(xué)教師的概率?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校為了對(duì)教師教學(xué)水平和教師管理水平進(jìn)行評(píng)價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對(duì)教師教學(xué)水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,對(duì)教師管理水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,其中對(duì)教師教學(xué)水平和教師管理水平都給出好評(píng)的有120人.
(1)填寫教師教學(xué)水平和教師管理水平評(píng)價(jià)的列聯(lián)表:
對(duì)教師管理水平好評(píng) | 對(duì)教師管理水平不滿意 | 合計(jì) | |
對(duì)教師教學(xué)水平好評(píng) | |||
對(duì)教師教學(xué)水平不滿意 | |||
合計(jì) |
請(qǐng)問是否可以在犯錯(cuò)誤概率不超過0.001的前提下,認(rèn)為教師教學(xué)水平好評(píng)與教師管理水平好評(píng)有關(guān)?
(2)若將頻率視為概率,有4人參與了此次評(píng)價(jià),設(shè)對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)為隨機(jī)變量.
①求對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)的分布列(概率用組合數(shù)算式表示);
②求的數(shù)學(xué)期望和方差.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)相關(guān)系數(shù)r來說,下列說法正確的是( 。.
A.,越接近0,相關(guān)程度越大;越接近1,相關(guān)程度越小
B.,越接近1,相關(guān)程度越大;越大,相關(guān)程度越小
C.,越接近1,相關(guān)程度越大;越接近0,相關(guān)程度越小
D.,越接近1,相關(guān)程度越;越大,相關(guān)程度越大
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com