已知拋物線C的頂點為O(0,0),焦點為F(0,1).

(1)求拋物線C的方程;
(2)過點F作直線交拋物線CA,B兩點.若直線AOBO分別交直線lyx-2于M、N兩點,求|MN|的最小值.

(1)x2=4y(2)

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的離心率相等. 直線與曲線交于兩點(的左側(cè)),與曲線交于兩點(的左側(cè)),為坐標原點,
(1)當=,時,求橢圓的方程;
(2)若,且相似,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知、分別是橢圓的左、右焦點.
(1)若是第一象限內(nèi)該橢圓上的一點,,求點的坐標;
(2)設(shè)過定點的直線與橢圓交于不同的兩點,且為銳角(其
為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè),分別是橢圓的左、右焦點,過作傾斜角為的直線交橢圓,兩點, 到直線的距離為,連結(jié)橢圓的四個頂點得到的菱形面積為.
(1)求橢圓的方程;
(2)過橢圓的左頂點作直線交橢圓于另一點, 若點是線段垂直平分線上的一點,且滿足,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知中心在坐標原點O的橢圓C經(jīng)過點A(2,3),且點F(2,0)為其右焦點.
(1)求橢圓C的方程;
(2)是否存在平行于OA的直線l,使得直線l與橢圓C有公共點,且直線OAl的距離等于4?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知橢圓=1(ab>0)的右焦點為F2(1,0),點A在橢圓上.

(1)求橢圓方程;
(2)點M(x0y0)在圓x2y2b2上,點M在第一象限,過點M作圓x2y2b2的切線交橢圓于P、Q兩點,問||+||+||是否為定值?如果是,求出該定值;如果不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的焦點坐標為F1(-1,0),F2(1,0),過F2垂直于長軸的直線交橢圓于P,Q兩點,且|PQ|=3.
(1)求橢圓的方程;
(2)過F2的直線l與橢圓交于不同的兩點MN,則△F1MN的內(nèi)切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點,焦點在軸上,以兩個焦點和短軸的兩個端點為頂點的四邊形F1B1 F2B2是一個面積為8的正方形.

(1)求橢圓C的方程;
(2)已知點P的坐標為P(-4,0), 過P點的直線L與橢圓C相交于M、N兩點,當線段MN的中點G落在正方形內(nèi)(包含邊界)時,求直線L的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知拋物線的頂點在坐標原點,對稱軸為軸,焦點為,拋物線上一點的橫坐標為2,且.
(1)求拋物線的方程;
(2)過點作直線交拋物線于兩點,求證: .

查看答案和解析>>

同步練習(xí)冊答案