【題目】數(shù)列的前項和記為, ,點在直線上,

(1)求數(shù)列的通項公式;

(2)設(shè), , 是數(shù)列的前項和,求

【答案】(1);(2).

【解析】試題分析:(1)在直線上可得, ,所以,兩式相減得為等比數(shù)列,從而得出的通項公式;(2)求出,利用分組求和法以及等差數(shù)列的求和公式與等比數(shù)列的求和公式可得出.

試題解析:(1)由題知,所以,兩式相減得

,又,

所以是以1為首項,4為公比的等比數(shù)列.

(2),

所以 .

【方法點晴】本題主要考查等比數(shù)列的定義與通項、等差數(shù)列的求和公式與等比數(shù)列的求和公式以及利用“分組求和法”求數(shù)列前項和,屬于中檔題. 利用“分組求和法”求數(shù)列前項和常見類型有兩種:一是通項為兩個公比不相等的等比數(shù)列的和或差,可以分別用等比數(shù)列求和后再相加減;二是通項為一個等差數(shù)列和一個等比數(shù)列的和或差,可以分別用等差數(shù)列求和、等比數(shù)列求和后再相加減.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列滿足,,設(shè)

1)求

2)判斷數(shù)列是否為等比數(shù)列,并說明理由;

3)求的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一條光線經(jīng)過P(2,3),射在直線l:xy10,反射后穿過點Q(1,1).

(1)求入射光線的方程;

(2)求這條光線從PQ的長度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,平面平面,側(cè)面是邊長為的等邊三角形,底面是矩形,且,則該四棱錐外接球的表面積等于__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列的前項和記為 ,點在直線上,

(1)求數(shù)列的通項公式;

(2)設(shè), , 是數(shù)列的前項和,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)若對任意的 恒成立,求實數(shù)的最小值.

(2)若 且關(guān)于的方程 上恰有兩個不相等的實數(shù)根,求實數(shù) 的取值范圍;

(3)設(shè)各項為正的數(shù)列 滿足: 求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知具有相關(guān)關(guān)系的兩個變量之間的幾組數(shù)據(jù)如下表所示:

(1)請根據(jù)上表數(shù)據(jù)在網(wǎng)格紙中繪制散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并估計當時, 的值;

(3)將表格中的數(shù)據(jù)看作五個點的坐標,則從這五個點中隨機抽取2個點,求這兩個點都在直線的右下方的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:三棱錐中,側(cè)面垂直底面, 是底面最長的邊;圖1是三棱錐的三視圖,其中的側(cè)視圖和俯視圖均為直角三角形;圖2是用斜二測畫法畫出的三棱錐的直觀圖的一部分,其中點平面內(nèi).

Ⅰ)請在圖2中將三棱錐的直觀圖補充完整,并指出三棱錐的哪些面是直角三角形;

Ⅱ)設(shè)二面角的大小為,求的值;

求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上可導,其導函數(shù)為f′(x),且函數(shù)y=(1-x)f′(x)的圖像如圖所示,則下列結(jié)論中一定成立的是(  )

A. 函數(shù)f(x)有極大值f(2)和極小值f(1) B. 函數(shù)f(x)有極大值f(-2)和極小值f(1)

C. 函數(shù)f(x)有極大值f(2)和極小值f(-2) D. 函數(shù)f(x)有極大值f(-2)和極小值f(2)

查看答案和解析>>

同步練習冊答案