精英家教網 > 高中數學 > 題目詳情

在△ABC中,a、b、c分別表示三個內角A、B、C的對邊,如果(a2+b2)sin(A-B)=(a2-b2)sin(A+B),判斷三角形的形狀.

△ABC為等腰或直角三角形


解析:

方法一  已知等式可化為

a2[sin(A-B)-sin(A+B)]=b2[-sin(A+B)-sin(A-B)]

∴2a2cosAsinB=2b2cosBsinA

由正弦定理可知上式可化為:

sin2AcosAsinB=sin2BcosBsinA

∴sinAsinB(sinAcosA-sinBcosB)=0

∴sin2A=sin2B,由0<2A,2B<2

得2A=2B或2A=-2B,

即A=B或A=-B,∴△ABC為等腰或直角三角形.

方法二  同方法一可得2a2cosAsinB=2b2sinAcosB

由正、余弦定理,可得

a2b= b2a 

∴a2(b2+c2-a2)=b2(a2+c2-b2)

即(a2-b2)(a2+b2-c2)=0

∴a=b或a2+b2=c2

∴△ABC為等腰或直角三角形.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是( 。
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

在△ABC中,A,B,C為三個內角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知y=f(x)函數的圖象是由y=sinx的圖象經過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標不變,橫坐標縮短為原來的
1
2
;
③將②中的圖象的橫坐標不變,縱坐標伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習冊答案