(2013•廣東)設(shè)m,n是兩條不同的直線,α,β是兩個不同的平面,下列命題中正確的是( 。
分析:由α⊥β,m?α,n?β,可推得m⊥n,m∥n,或m,n異面;由α∥β,m?α,n?β,可得m∥n,或m,n異面;由m⊥n,m?α,n?β,可得α與β可能相交或平行;由m⊥α,m∥n,則n⊥α,再由n∥β可得α⊥β.
解答:解:選項(xiàng)A,若α⊥β,m?α,n?β,則可能m⊥n,m∥n,或m,n異面,故A錯誤;
選項(xiàng)B,若α∥β,m?α,n?β,則m∥n,或m,n異面,故B錯誤;
選項(xiàng)C,若m⊥n,m?α,n?β,則α與β可能相交,也可能平行,故C錯誤;
選項(xiàng)D,若m⊥α,m∥n,則n⊥α,再由n∥β可得α⊥β,故D正確.
故選D
點(diǎn)評:本題考查命題真假的判斷與應(yīng)用,涉及空間中直線與平面的位置關(guān)系,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)設(shè)函數(shù)f(x)=(x-1)ex-kx2(k∈R).
(1)當(dāng)k=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)k∈(
12
,1]
時,求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)設(shè)l為直線,α,β是兩個不同的平面,下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)設(shè)整數(shù)n≥4,集合X={1,2,3,…,n}.令集合S={(x,y,z)|x,y,z∈X,且三條件x<y<z,y<z<x,z<x<y恰有一個成立}.若(x,y,z)和(z,w,x)都在S中,則下列選項(xiàng)正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)設(shè)數(shù)列{an}是首項(xiàng)為1,公比為-2的等比數(shù)列,則a1+|a2|+a3+|a4|=
15
15

查看答案和解析>>

同步練習(xí)冊答案