已知拋物線的焦點(diǎn)為,點(diǎn)是拋物線上的一點(diǎn),且其縱坐標(biāo)為4,.
(1)求拋物線的方程;
(2)設(shè)點(diǎn)是拋物線上的兩點(diǎn),的角平分線與軸垂直,求直線AB的斜率;
(3)在(2)的條件下,若直線過點(diǎn),求弦的長.
(1)(2)-1(3)
解析試題分析:解:(1)設(shè),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fa/6/1ccjd4.png" style="vertical-align:middle;" />,由拋物線的定義得,又,所以,因此,解得,從而拋物線的方程為.
(2)由(1)知點(diǎn)的坐標(biāo)為,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/07/e/vxerd1.png" style="vertical-align:middle;" />的角平分線與軸垂直,所以可知的傾斜角互補(bǔ),即的斜率互為相反數(shù)
設(shè)直線的斜率為,則,由題意,
把代入拋物線方程得,該方程的解為4、,
由韋達(dá)定理得,即,同理,
所以,
(3)設(shè),代入拋物線方程得,,
考點(diǎn):拋物線的方程
點(diǎn)評(píng):關(guān)于曲線的大題,第一問一般是求出曲線的方程,第二問常與直線結(jié)合起來,當(dāng)涉及到交點(diǎn)時(shí),常用到根與系數(shù)的關(guān)系式:()。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)F為拋物線E: 的焦點(diǎn),A、B、C為該拋物線上三點(diǎn),已知 且.
(1)求拋物線方程;
(2)設(shè)動(dòng)直線l與拋物線E相切于點(diǎn)P,與直線相交于點(diǎn)Q。證明以PQ為直徑的圓恒過y軸上某定點(diǎn)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左焦點(diǎn)為,直線與軸交于點(diǎn),過點(diǎn)且傾斜角為30°的直線交橢圓于兩點(diǎn).
(Ⅰ)求直線和橢圓的方程;
(Ⅱ)求證:點(diǎn)在以線段為直徑的圓上;
(Ⅲ)在直線上有兩個(gè)不重合的動(dòng)點(diǎn),以為直徑且過點(diǎn)的所有圓中,求面積最小的圓的半徑長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知點(diǎn)P(4, 4),圓C:與橢圓E:有一個(gè)公共點(diǎn)A(3,1),F(xiàn)1、F2分別是橢圓的左、右焦點(diǎn),直線PF1與圓C相切.
(Ⅰ)求m的值與橢圓E的方程;(Ⅱ)設(shè)Q為橢圓E上的一個(gè)動(dòng)點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,己知直線l與拋物線相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,定點(diǎn)B(2,0).
(1)若動(dòng)點(diǎn)M滿足,求點(diǎn)M軌跡C的方程:
(2)若過點(diǎn)B的直線(斜率不為零)與(1)中的軌跡C交于不同的兩點(diǎn)E,F(xiàn)(E在B、F之間),試求△OBE與△OBF面積之比的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知焦距為的雙曲線的焦點(diǎn)在x軸上,且過點(diǎn)P .
(Ⅰ)求該雙曲線方程 ;
(Ⅱ)若直線m經(jīng)過該雙曲線的右焦點(diǎn)且斜率為1,求直線m被雙曲線截得的弦長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:()經(jīng)過與兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)過原點(diǎn)的直線l與橢圓C交于A、B兩點(diǎn),橢圓C上一點(diǎn)M滿足.求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,且過雙曲線的頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)命題:“設(shè)、是雙曲線上關(guān)于它的中心對(duì)稱的任意兩點(diǎn), 為該雙曲線上的動(dòng)點(diǎn),若直線、均存在斜率,則它們的斜率之積為定值”.試類比上述命題,寫出一個(gè)關(guān)于橢圓的類似的正確命題,并加以證明和求出此定值;
(3)試推廣(Ⅱ)中的命題,寫出關(guān)于方程(,不同時(shí)為負(fù)數(shù))的曲線的統(tǒng)一的一般性命題(不必證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
極坐標(biāo)系與直角坐標(biāo)系有相同的長度單位,以原點(diǎn)為極點(diǎn),以正半軸為極軸,已知曲線的極坐標(biāo)方程為,曲線的參數(shù)方程是(為參數(shù),,射線與曲線交于極點(diǎn)外的三點(diǎn)
(Ⅰ)求證:;
(Ⅱ)當(dāng)時(shí),兩點(diǎn)在曲線上,求與的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com