【題目】如圖,在四棱錐中,平面, ,,,為側(cè)棱上一點(diǎn).

(Ⅰ)若,求證:平面;

(Ⅱ)求證:平面平面

(Ⅲ)在側(cè)棱上是否存在點(diǎn),使得平面?若存在,求出線段的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由.

【答案】(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)存在,線段PF長(zhǎng).

【解析】

(Ⅰ)設(shè),連結(jié),由,得,進(jìn)而證明,即可證明;(Ⅱ)由勾股定理推導(dǎo),進(jìn)而證明平面即可求解;(Ⅲ)在平面內(nèi)作于點(diǎn),證明平面,進(jìn)而在直角三角形PAD中求長(zhǎng)度

(Ⅰ)設(shè),連結(jié),

由已知,,,得

.

,得.

中,由,得.

因?yàn)?/span>平面平面,

所以 平面.

(Ⅱ)因?yàn)?/span>平面,平面

所以.

由已知得,,

所以.

所以.

,所以平面.

因?yàn)?/span>平面,

所以平面平面.

(Ⅲ)在平面內(nèi)作于點(diǎn)

,,,

平面.

因?yàn)?/span>平面,所以.

,所以平面.

,,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的內(nèi)角、、的對(duì)邊分別為、,內(nèi)一點(diǎn),若分別滿足下列四個(gè)條件:

;

;

;

;

則點(diǎn)分別為的(

A.外心、內(nèi)心、垂心、重心B.內(nèi)心、外心、垂心、重心

C.垂心、內(nèi)心、重心、外心D.內(nèi)心、垂心、外心、重心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,,,,,O的中點(diǎn).

1)證明:平面;

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) ,則的最小值為__________ 有最小值,則實(shí)數(shù)的取值范圍是_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,傾斜角為的直線經(jīng)過(guò)坐標(biāo)原點(diǎn),曲線的參數(shù)方程為為參數(shù)).以點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求的極坐標(biāo)方程;

(2)設(shè)的交點(diǎn)為、的交點(diǎn)為、,且,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】改革開放40年來(lái),體育產(chǎn)業(yè)蓬勃發(fā)展反映了健康中國(guó)理念的普及.下圖是我國(guó)2006年至2016年體育產(chǎn)業(yè)年增加值及年增速圖.其中條形圖表示體育產(chǎn)業(yè)年增加值(單位:億元),折線圖為體育產(chǎn)業(yè)年增長(zhǎng)率(%).

(Ⅰ)從2007年至2016年這十年中隨機(jī)選出一年,求該年體育產(chǎn)業(yè)年增加值比前一年多億元以上的概率;

(Ⅱ)從2007年至2011年這五年中隨機(jī)選出兩年,求至少有一年體育產(chǎn)業(yè)年增長(zhǎng)率超過(guò)25%的概率;

(Ⅲ)由圖判斷,從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增長(zhǎng)率方差最大?從哪年開始連續(xù)三年的體育產(chǎn)業(yè)年增加值方差最大?(結(jié)論不要求證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,右焦點(diǎn)為,以原點(diǎn)為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線相切.

(1)求橢圓的方程;

(2)如圖,過(guò)定點(diǎn)的直線交橢圓兩點(diǎn),連接并延長(zhǎng)交,求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】0,1,2,3,45這六個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的四位數(shù).

(1)在組成的四位數(shù)中,求所有偶數(shù)的個(gè)數(shù);

2)在組成的四位數(shù)中,求比2430大的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案