已知函數(shù),為自然對數(shù)的底數(shù)).
(1)求函數(shù)的最小值;
(2)若≥0對任意的恒成立,求實(shí)數(shù)的值;
(3)在(2)的條件下,證明:

(1)其最小值為(2)(3)由累加即可得證.

解析試題分析:(1)由題意
.
當(dāng)時(shí), ;當(dāng)時(shí),.
單調(diào)遞減,在單調(diào)遞增.
處取得極小值,且為最小值,
其最小值為     
(2)對任意的恒成立,即在上,.
由(1),設(shè),所以.
.
易知在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,
∴ 處取得最大值,而.
因此的解為,∴.     
(3)由(2)知,對任意實(shí)數(shù)均有,即.
 ,則.
.

   
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問題中的應(yīng)用;導(dǎo)數(shù)的運(yùn)算.
點(diǎn)評:本題考查導(dǎo)數(shù)知識的運(yùn)用,考查函數(shù)的單調(diào)性與最值,考查恒成立問題,同時(shí)考查不等式的證明,解題的關(guān)鍵是正確求導(dǎo)數(shù),確定函數(shù)的單調(diào)性.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若對任意的恒成立,求實(shí)數(shù)的最小值.
(2)若且關(guān)于的方程上恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)設(shè)各項(xiàng)為正的數(shù)列滿足:求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),,其中R .
(1)討論的單調(diào)性;
(2)若在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)的取值范圍;
(3)設(shè)函數(shù), 當(dāng)時(shí),若存在,對于任意的,總有成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),討論的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù).
(Ⅰ)求的最小值;
(Ⅱ)若對所有都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中.
(I)若函數(shù)在區(qū)間(1,2)上不是單調(diào)函數(shù),試求的取值范圍;
(II)已知,如果存在,使得函數(shù)處取得最小值,試求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
⑴若的極值點(diǎn),求的值;
⑵若的圖象在點(diǎn)處的切線方程為,求在區(qū)間上的最大值;
⑶當(dāng)時(shí),若在區(qū)間上不單調(diào),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算下列定積分(本小題滿分12分)
(1)            (2)
(3)                (4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求函數(shù)在區(qū)間上的最值.

查看答案和解析>>

同步練習(xí)冊答案