【題目】【2017屆湖北省武漢市武昌區(qū)高三1月調(diào)研考試文數(shù)】已知函數(shù).
(Ⅰ)討論的單調(diào)性;
(Ⅱ)設(shè),若對(duì),,求的取值范圍.
【答案】(Ⅰ) ,在上單調(diào)遞增, ,在上單調(diào)遞減,在上單調(diào)遞增;(Ⅱ).
【解析】
試題分析:(Ⅰ)先求函數(shù)的導(dǎo)數(shù),并化簡(jiǎn)為 , 不在定義域內(nèi),所以分 和 兩種情況討論函數(shù)的單調(diào)性;(Ⅱ)根據(jù)(Ⅰ)的結(jié)果,設(shè) 并且去掉絕對(duì)值,變形為 ,令 ,根據(jù)函數(shù)的單調(diào)性,參變分離后, 轉(zhuǎn)化為求函數(shù)最值.
試題解析:(Ⅰ)的定義域?yàn)?/span> ,
求導(dǎo)數(shù),得 ,
若 ,則,此時(shí)在上單調(diào)遞增,
若 ,則由得,當(dāng)時(shí), ,當(dāng)時(shí), ,
此時(shí)在上單調(diào)遞減,在上單調(diào)遞增.
(Ⅱ)不妨設(shè),而,由(Ⅰ)知,在上單調(diào)遞增,
從而 等價(jià)于
①
令,則,
因此,①等價(jià)于在上單調(diào)遞減,
對(duì)恒成立,
對(duì)恒成立, ,
又,當(dāng)且僅當(dāng),即時(shí),等號(hào)成立.
,故的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)判斷函數(shù)的奇偶性;
(2) 判斷函數(shù)在(1,+∞)上的單調(diào)性,并用定義證明你的結(jié)論;
(3)若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修:坐標(biāo)系與參數(shù)方程
已知曲線C的極坐標(biāo)方程為ρ﹣4cosθ+3ρsin2θ=0,以極點(diǎn)為原點(diǎn),極軸為x軸的正半軸建立平面直角坐標(biāo)系,直線l過點(diǎn)M(1,0),傾斜角為 .
(Ⅰ)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(Ⅱ)若曲線C經(jīng)過伸縮變換 后得到曲線C′,且直線l與曲線C′交于A,B兩點(diǎn),求|MA|+|MB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取500件,測(cè)量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測(cè)量結(jié)果得如下頻率分布直方圖:
(1)求這500件產(chǎn)品質(zhì)量指標(biāo)值的樣本平均數(shù)和樣本方差s2(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(2)由直方圖可以認(rèn)為,這種產(chǎn)品的質(zhì)量指標(biāo)值Z服從正態(tài)分布N(μ,σ2),其中μ近似為樣本平均數(shù),σ2近似為樣本方差s2.
(ⅰ)利用該正態(tài)分布,求P(187.8<Z<212.2);
(ⅱ)某用戶從該企業(yè)購買了100件這種產(chǎn)品,記X表示這100件產(chǎn)品中質(zhì)量指標(biāo)值位于區(qū)間(187.8,212.2)的產(chǎn)品件數(shù).利用(ⅰ)的結(jié)果,求E(X).
附: ≈12.2.若Z~N(μ,σ2),則P(μ-σ<Z<μ+σ)=0.682 6,P(μ-2σ<Z<μ+2σ)=0.954 4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆湖北省荊、荊、襄、宜四地七?荚嚶(lián)盟高三2月聯(lián)考數(shù)學(xué)(文)】已知函數(shù).
(Ⅰ)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
(Ⅱ)若有兩個(gè)極值點(diǎn),證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)().
(Ⅰ)若曲線上點(diǎn)處的切線過點(diǎn),求函數(shù)的單調(diào)減區(qū)間;
(Ⅱ)若函數(shù)在上無零點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是定義在上的奇函數(shù),且, .
(1)求函數(shù)的解析式;
(2)判斷并證明函數(shù)在上的單調(diào)性;
(3)令,若對(duì)任意的都有,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8分.
有時(shí)可用函數(shù)
描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).
(1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;
(2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,
.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)有零點(diǎn),求實(shí)數(shù)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com