某公司欲建連成片的網(wǎng)球場數(shù)座,用288萬元購買土地20000平方米,每座球場的建筑面積為1000平方米,球場每平方米的平均建筑費用與所建的球場數(shù)有關(guān),當(dāng)該球場建n座時,每平方米的平均建筑費用表示,且(其中),又知建5座球場時,每平方米的平均建筑費用為400元.
(1)為了使該球場每平方米的綜合費用最。ňC合費用是建筑費用與購地費用之和),公司應(yīng)建幾座網(wǎng)球場?
(2)若球場每平方米的綜合費用不超過820元,最多建幾座網(wǎng)球場?

(1)12;(2)18

解析試題分析:(1)根據(jù)球場建n座時,每平方米的平均建筑費用表示,且(其中),又知建5座球場時,每平方米的平均建筑費用為400元.所以可以求出的值,這樣就求出每平方米的平均建筑費用的表達式.另外每平米的購地費用是總費用除以總的建筑面積.再通過應(yīng)用基本不等式即可得到結(jié)論.本小題的關(guān)鍵是購地費用不是總費用除以購買了20000平方米,這也是易錯點.
(2)由(1)可知球場每平方米的綜合費用的表達式,又球場每平方米的綜合費用不超過820元,通過解不等式即可得到結(jié)論.
試題解析:(1)設(shè)建成個球場,則每平方米的購地費用為,
由題意知,則,所以.
所以,從而每平方米的綜合費用為
(元).
當(dāng)且僅當(dāng)=12時等號成立.所以當(dāng)建成12座球場時,每平方米的綜合費用最。     8分
(2)由題意得 ,即
解得:.所以最多建 18個網(wǎng)球場.         12分
考點: 1.基本不等式的應(yīng)用.2.二次不等式的解法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

某投資公司投資甲、乙兩個項目所獲得的利潤分別是P(億元)和Q(億元),它們與投資額t(億元)的關(guān)系有經(jīng)驗公式P=,Q=t,今該公司將5億元投資于這兩個項目,其中對甲項目投資x(億元),投資這兩個項目所獲得的總利潤為y(億元).求:
(1)y關(guān)于x的函數(shù)表達式.
(2)總利潤的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=ax2bxb-1(a≠0).
(1)當(dāng)a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某單位擬建一個扇環(huán)面形狀的花壇(如圖所示),該扇環(huán)面是由以點為圓心的兩個同心圓弧和延長后通過點的兩條直線段圍成.按設(shè)計要求扇環(huán)面的周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米,圓心角為(弧度).

(1)求關(guān)于的函數(shù)關(guān)系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,求關(guān)于的函數(shù)關(guān)系式,并求出為何值時,取得最大值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2+x,若對任意x1、x2∈R,恒有2f≤f(x1)+f(x2)成立,不等式f(x)<0的解集為A.
(1)求集合A;
(2)設(shè)集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),其中為常數(shù).
(1)若函數(shù)在區(qū)間上單調(diào),求的取值范圍;
(2)若對任意,都有成立,且函數(shù)的圖象經(jīng)過點,
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)(為實常數(shù))為奇函數(shù),函數(shù)().
(1)求的值;
(2)求上的最大值;
(3)當(dāng)時,對所有的恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)
(1)求函數(shù)上的值域;
(2)證明對于每一個,在上存在唯一的,使得;
(3)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某種商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了擴大該商品的影響力,提高年銷售量.公司決定明年對該商品進行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬元作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品明年的銷售量至少應(yīng)達到多少萬件時,才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.

查看答案和解析>>

同步練習(xí)冊答案