【題目】對于函數(shù),有下列五個命題:

存在反函數(shù),且與反函數(shù)圖象有公共點,則公共點一定在直線上;

上有定義,則一定是偶函數(shù);

是偶函數(shù),且有解,則解的個數(shù)一定是偶數(shù);

是函數(shù)的周期,則,也是函數(shù)的周期;

是函數(shù)為奇函數(shù)的充分不必要條件。

從中任意抽取一個,恰好是真命題的概率為 ( )

A.B.C.D.

【答案】B

【解析】

y=fx)存在反函數(shù),且與反函數(shù)圖象有公共點,則公共點不一定在直線y=x上,如函數(shù)fx=,反函數(shù)是其本身,公共點是整個函數(shù)圖象;

y=fx)在R上有定義,則y=f|x|)一定是偶函數(shù),因f|-x|=f|x|)對于任意x恒成立,故正確;

y=fx)是偶函數(shù),且fx=0有解,則解的個數(shù)一定是偶數(shù)不正確,如y=x2,是偶函數(shù),x2=0的解只有一個,不是偶數(shù)個;

TT≠0)是函數(shù)y=fx)的周期,則fx+T=fx),從而fx+nT=fx),則nTn∈N),也是函數(shù)y=fx)的周期;

⑤f0=0是函數(shù)y=fx)為奇函數(shù)的充分也不必要條件,不正確,fx=x2時,f0=0,而fx=x2是偶函數(shù).

故正確的命題有2個,

則從中任意抽取一個,恰好是真命題的概率為

故選B

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為,甲由扇形中心出發(fā)沿以每秒2米的速度向快走,同時乙從出發(fā),沿扇形弧以每秒米的速度向慢跑,記秒時甲、乙兩人所在位置分別為,,通過計算,判斷下列說法是否正確:

(1)當時,函數(shù)取最小值;

(2)函數(shù)在區(qū)間上是增函數(shù);

(3)若最小,則;

(4)上至少有兩個零點;

其中正確的判斷序號是______(把你認為正確的判斷序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),曲線的參數(shù)方程為為參數(shù)),直線與曲線交于,兩點.

(1)以坐標原點為極點,軸正半軸為極軸建立極坐標系,求曲線的極坐標方程;

(2)若,點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,定義為兩點的“切比雪夫距離”,又設點上任意一點,稱的最小值為點到直線的“切比雪夫距離”,記作,給出四個命題,正確的是________.

①對任意三點、、,都有

到原點的“切比雪夫距離”等于的點的軌跡是正方形;

已知點和直線,則;

定點,動點滿足,則點的軌跡與直線為常數(shù))有且僅有個公共點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知、、是同一平面上不共線的四點,若存在一組正實數(shù)、、,使得,則三個角、、( )

A. 都是鈍角B. 至少有兩個鈍角

C. 恰有兩個鈍角D. 至多有兩個鈍角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】太極圖被稱為“中華第一圖”.從孔廟大成殿梁柱,到樓觀臺、三茅宮標記物;從道袍、卦攤、中醫(yī)、氣功、武術到韓國國旗,太極圖無不躍居其上.這種廣為人知的太極圖,其形狀如陰陽兩魚互抱在一起,因而被稱為“陰陽魚太極圖”.在如圖所示的陰陽魚圖案中,陰影部分可表示為,設點,則的最大值與最小值之差是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)為正常數(shù)),且函數(shù)的圖像在軸上的截距相等;

1)求的值;

2)若為常數(shù)),試討論函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調查,隨機調查了人,他們年齡的頻數(shù)分布及支持生育二胎人數(shù)如下表:

年齡

頻數(shù)

支持“生二胎”

1)由以上統(tǒng)計數(shù)據(jù)填下面列聯(lián)表,并問是否有的把握認為以歲為分界點對“生育二胎放開”政策的支持度有差異;

年齡不低于歲的人數(shù)

年齡低于歲的人數(shù)

合計

支持

不支持

合計

2)若對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持“生育二胎放開”的概率是多少?

參考數(shù)據(jù):,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知下圖是四面體及其三視圖,的中點,的中點.

1)求四面體的體積;

2)求與平面所成的角;

查看答案和解析>>

同步練習冊答案