雙曲線(xiàn)
y2
3
-x2
=1的漸近線(xiàn)方程為(  )
A、y=±
3
B、y=±
3
x
C、y=±
3
3
D、y=±
3
3
x
考點(diǎn):雙曲線(xiàn)的簡(jiǎn)單性質(zhì)
專(zhuān)題:圓錐曲線(xiàn)的定義、性質(zhì)與方程
分析:直接根據(jù)雙曲線(xiàn)的方程,令方程的右邊等于0求出漸近線(xiàn)的方程.
解答: 解:已知雙曲線(xiàn)
y2
3
-x2
=1,
令:
y2
3
-x2
=0
即得到漸近線(xiàn)方程為:y=±
3
x
故選:B
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):雙曲線(xiàn)的漸漸線(xiàn)方程的求法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,△ABC的三邊分別為a、b、c.
(1)若a、b、c滿(mǎn)足a2=b2+c2-bc,求∠A的度數(shù);
(2)在(1)的條件下,若b=3,c=4,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)F,點(diǎn)E(
a2
c
,0)(c為橢圓的半焦距)在x軸上,若橢圓的離心率e=
2
2
,且|EF|=1.
(1)求橢圓方程;
(2)若過(guò)F的直線(xiàn)交橢圓與A,B兩點(diǎn),且
OA
+
OB
與向量
m
=(4,-
2
)共線(xiàn)(其中O為坐標(biāo)原點(diǎn)),求證:
OA
OB
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(2
6
,
3
5
)在橢圓
x2
a2
+
y2
9
=1上,則橢圓的離心率為( 。
A、
4
5
B、
3
5
C、
5
3
D、
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

圓錐曲線(xiàn)中不同曲線(xiàn)的性質(zhì)都是有一定聯(lián)系的,比如圓可以看成特殊的橢圓,所以很多圓的性質(zhì)結(jié)論可以類(lèi)比到橢圓,例如;如圖所示,橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)可以被認(rèn)為由圓x2+y2=a2作縱向壓縮變換或由圓x2+y2=b2作橫向拉伸變換得到的.依據(jù)上述論述我們可以推出橢圓C的面積公式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線(xiàn)的漸近線(xiàn)為y=±
3
x,焦點(diǎn)坐標(biāo)為(-4,0),(4,0),則雙曲線(xiàn)方程為( 。
A、
x2
4
-
y2
12
=1
B、
x2
2
-
y2
4
=1
C、
x2
24
-
y2
8
=1
D、
x2
8
-
y2
24
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x2+4
1-x
+lg(3x+1)的定義域?yàn)椋ā 。?/div>
A、(-
1
3
,+∞)
B、(-∞,-
1
3
C、(-
1
3
,1)
D、(-
1
3
,
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列命題:
(1)函數(shù)f(x)=2xln(x-2)-3只有一個(gè)零點(diǎn);
(2)若
a
b
不共線(xiàn),則
a
+
b
a
-
b
不共線(xiàn);
(3)若非零平面向量
a
b
,
c
兩兩所成的夾角均相等,則夾角為120°;
(4)若數(shù)列{an}的前n項(xiàng)的和Sn=2n+1-1,則數(shù)列{an}是等比數(shù)列;
(5)函數(shù)y=2x的圖象經(jīng)過(guò)一定的平移可以得到函數(shù)y=3•2x-1的圖象.
其中,所有正確命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知∠B=30°,△ABC的面積為
3
2

(Ⅰ)當(dāng)a,b,c成等差數(shù)列時(shí),求b;
(Ⅱ)求AC邊上的中線(xiàn)BD的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案