(本小題滿分14分)
已知函數(shù), 其中為常數(shù),且函數(shù)圖像過(guò)原點(diǎn).
(1) 求的值;
(2) 證明函數(shù)在[0,2]上是單調(diào)遞增函數(shù);
(3) 已知函數(shù), 求函數(shù)的零點(diǎn)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),函數(shù)是區(qū)間上的減函數(shù).
(1)求的最大值;
(2)若上恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.已知函數(shù).
(1)求證:在(0,+∞)上是增函數(shù);
(2)若在(0,+∞)上恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/2/1h4rr3.gif" style="vertical-align:middle;" />。
(1)求函數(shù)的值域;
(2)求函數(shù)的反函數(shù)。(12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)設(shè)函數(shù),的兩個(gè)極值點(diǎn)為,線段的中點(diǎn)為.
(1) 如果函數(shù)為奇函數(shù),求實(shí)數(shù)的值;當(dāng)時(shí),求函數(shù)圖象的對(duì)稱中心;
(2) 如果點(diǎn)在第四象限,求實(shí)數(shù)的范圍;
(3) 證明:點(diǎn)也在函數(shù)的圖象上,且為函數(shù)圖象的對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求函數(shù)的對(duì)稱軸方程;
(2)當(dāng)時(shí),若函數(shù)有零點(diǎn),求m的范圍;
(3)若,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分14分)
已知:函數(shù)是定義在上的偶函數(shù),當(dāng)時(shí),為實(shí)數(shù)).
。1)當(dāng)時(shí),求的解析式;
。2)若,試判斷上的單調(diào)性,并證明你的結(jié)論;
(3)是否存在,使得當(dāng)有最大值1?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義域?yàn)镽,且對(duì)任意實(shí)數(shù)都滿足不等式的所有函數(shù)組成的集合記為M,例如,函數(shù)。
(1)已知函數(shù),證明:;
(2)寫出一個(gè)函數(shù),使得,并說(shuō)明理由;
(3)寫出一個(gè)函數(shù),使得數(shù)列極限
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
已知三次函數(shù)的導(dǎo)函數(shù),,、為實(shí)數(shù)。
(1)若曲線在點(diǎn)(,)處切線的斜率為12,求的值;
(2)若在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,且,求函數(shù)的解析式。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com