已知橢圓C的中心在圓點(diǎn),焦點(diǎn)在x軸上,F(xiàn)1,F(xiàn)2分別是橢圓C的左、右焦點(diǎn),M是橢圓短軸的一個(gè)端點(diǎn),過(guò)F1的直線l與橢圓交于A,B兩點(diǎn),△MF1F1的面積為4,△ABF2的周長(zhǎng)為8

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)點(diǎn)Q的坐標(biāo)為(1,0),是否存在橢圓上的點(diǎn)P及以Q為圓心的一個(gè)圓,使得該圓與直線PF1,PF2都相切,若存在,求出P點(diǎn)坐標(biāo)及圓的方程;若不存在,請(qǐng)說(shuō)明理由.

答案:
解析:

  (Ⅰ)由題意知:,解得

  ∴橢圓的方程為 5分

  (Ⅱ)假設(shè)存在橢圓上的一點(diǎn),使得直線與以為圓心的圓相切,則到直線的距離相等,

  

  化簡(jiǎn)整理得: 9分

  ∵點(diǎn)在橢圓上,∴

  解得:(舍) 11分

  時(shí),,,∴橢圓上存在點(diǎn),其坐標(biāo)為,使得直線與以為圓心的圓相切 13分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的
3
倍,其上一點(diǎn)到右焦點(diǎn)的最短距離為
3
-
2

(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+b與圓O:x2+y2=
3
4
相切,且交橢圓C于A、B兩點(diǎn),求當(dāng)△AOB的面積最大時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,左右焦點(diǎn)分別為F1,F(xiàn)2,且|F1F2|=2,點(diǎn)(1,
3
2
)在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)F1的直線l與橢圓C相交于A,B兩點(diǎn),且△AF2B的面積為
12
2
7
,求以F2為圓心且與直線l相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,離心率為
12
,橢圓的短軸端點(diǎn)和焦點(diǎn)所組成的四邊形周長(zhǎng)等于8,
(Ⅰ)求橢圓C的方程;
(Ⅱ)若過(guò)點(diǎn)(0,-2)的直線l與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過(guò)橢圓C的右頂點(diǎn),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),右準(zhǔn)線為x=3
2
,離心率為
6
3
.若直線y=t(t>o)與橢圓C交于不同的兩點(diǎn)A,B,以線段AB為直徑作圓M.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若圓M與x軸相切,求圓M被直線x-
3
y+1=0截得的線段長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在原點(diǎn),離心率等于
23
,右焦點(diǎn)F是圓(x-1)2+y2=1的圓心,過(guò)橢圓上位于y軸左側(cè)的一動(dòng)點(diǎn)P作該圓的兩條切線分別交y軸于M、N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ) 求線段MN的長(zhǎng)的最大值,并求出此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案