解答題:解答應(yīng)寫出必要的文字說明,證明過程或演算步驟.

,其中>0,記函數(shù)f(x)=(+k.

(1)

f(x)圖象中相鄰兩條對(duì)稱軸間的距離不小于,求的取值范圍.

(2)

f(x)的最小正周期為,且當(dāng)x時(shí),f(x)的最大值是,求f(x)的解析式,并說明如何由y=sinx的圖象變換得到y=f(x)的圖象.

答案:
解析:

(1)

解:∵=

=

f(x)=(k

…………………………………………………4分

由題意可知,∴

>1,∴0≤≤1…………………………………………………………6分

(2)

解:∵T,∴=1

f(x)=sin(2x)+k

x…………………………………………8分

從而當(dāng)2x即x=時(shí)

fmax(x)=f()=sink=k+1=

k=-

f(x)=sin(2x)…………………………………………………………10分

y=sinx的圖象向右平移個(gè)單位得到y=sin(x)的圖象,再將得到的圖象橫坐標(biāo)變?yōu)樵瓉淼?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0371/0019/b6bfe74353f0e936fec90e992edf541a/C/Image96.gif" width=16 HEIGHT=41>倍(縱坐標(biāo)不變)得到y=sin(2x)的圖象.………………12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:廣東實(shí)驗(yàn)中學(xué)華南師附中廣州市第六中學(xué)2007屆高三級(jí)月考試卷(一)、數(shù)學(xué)(理工類)、(集合與邏輯、函數(shù)、導(dǎo)數(shù)? 題型:044

解答題:解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟

已知二次函數(shù)f(x)=ax2+bx+c

(1)

若任意x1,x2∈R,且x1<x2,都有f(x1)≠f(x2),求證:關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根且必有一個(gè)根屬于;

(2)

若關(guān)于x的方程的根為m,且成等差數(shù)列,設(shè)函數(shù)f(x)的圖象的對(duì)稱軸方程為x=x0,求證:x0<m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:甘肅省蘭州一中2006-2007學(xué)年度第一學(xué)期高三年級(jí)期中考試、數(shù)學(xué)(理)試題 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟

已知函數(shù)f(x)=x2-1(x≥1)的圖像C1,曲線C2與C1關(guān)于直線y=x對(duì)稱

(1)

求曲線C2的方程y=g(x);

(2)

設(shè)函數(shù)y=g(x)的定義域?yàn)镸,x1,x2∈M,且,求證:;

(3)

設(shè)A,B為曲線C2上任意不同的兩點(diǎn),試證明直線AB與直線y=x必相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京九中2006-2007學(xué)年度第一學(xué)期高三期中數(shù)學(xué)統(tǒng)練試題(理科) 題型:044

解答題:解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟.

已知函數(shù)f(x)的定義域?yàn)?I>R(實(shí)數(shù)集),且對(duì)于任意實(shí)數(shù)x,y總有f(x+y)=f(x)·f(y)成立.

(1)

試說明函數(shù)yf(x)的圖象必通過(0,0)點(diǎn),或通過(0,1)點(diǎn);

(2)

若存在使得,試證對(duì)于任意,f(x)>0總成立;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:綏寧二中2007屆高三數(shù)學(xué)第四次月考試卷(文科) 題型:044

解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟.

袋中裝有m個(gè)紅球和n個(gè)白球,m≥n≥2,這些紅球和白球除了顏色不同以外,其余都相同.從袋中同時(shí)取出2個(gè)球.

(1)

若取出是2個(gè)紅球的概率等于取出的是一紅一白的2個(gè)球的概率的整數(shù)倍,試證:m必為奇數(shù)

(2)

在m,n的數(shù)組中,若取出的球是同色的概率等于不同色的概率,試求m+n≤40的所有數(shù)組(m,n).

查看答案和解析>>

同步練習(xí)冊(cè)答案