【題目】已知a∈R,函數(shù)f(x)=log2 +a).
(1)當(dāng)a=5時(shí),解不等式f(x)>0;
(2)若關(guān)于x的方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,求a的取值范圍.
(3)設(shè)a>0,若對任意t∈[ ,1],函數(shù)f(x)在區(qū)間[t,t+1]上的最大值與最小值的差不超過1,求a的取值范圍.

【答案】
(1)解:當(dāng)a=5時(shí),f(x)=log2 +5),

由f(x)>0;得log2 +5)>0,

+5>1,則 >﹣4,則 +4= >0,即x>0或x<﹣

即不等式的解集為{x|x>0或x<﹣ }.


(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2 +a)﹣log2[(a﹣4)x+2a﹣5]=0.

即log2 +a)=log2[(a﹣4)x+2a﹣5],

+a=(a﹣4)x+2a﹣5>0,①

則(a﹣4)x2+(a﹣5)x﹣1=0,

即(x+1)[(a﹣4)x﹣1]=0,②,

當(dāng)a=4時(shí),方程②的解為x=﹣1,代入①,成立

當(dāng)a=3時(shí),方程②的解為x=﹣1,代入①,成立

當(dāng)a≠4且a≠3時(shí),方程②的解為x=﹣1或x=

若x=﹣1是方程①的解,則 +a=a﹣1>0,即a>1,

若x= 是方程①的解,則 +a=2a﹣4>0,即a>2,

則要使方程①有且僅有一個(gè)解,則1<a≤2.

綜上,若方程f(x)﹣log2[(a﹣4)x+2a﹣5]=0的解集中恰好有一個(gè)元素,則a的取值范圍是1<a≤2,或a=3或a=4.


(3)函數(shù)f(x)在區(qū)間[t,t+1]上單調(diào)遞減,

由題意得f(t)﹣f(t+1)≤1,

即log2 +a)﹣log2 +a)≤1,

+a≤2( +a),即a≥ =

設(shè)1﹣t=r,則0≤r≤ ,

= = ,

當(dāng)r=0時(shí), =0,

當(dāng)0<r≤ 時(shí), = ,

∵y=r+ 在(0, )上遞減,

∴r+ = ,

= = ,

∴實(shí)數(shù)a的取值范圍是a≥


【解析】(1)當(dāng)a=5時(shí),f(x)=log2 +5)>0,即為 +5>1,解分式不等式即可,(2)由f(x)﹣log2[(a﹣4)x+2a﹣5]=0得log2+a)﹣log2[(a﹣4)x+2a﹣5]=0.即log2 +a)=log2[(a﹣4)x+2a﹣5],討論a的取值范圍進(jìn)行求解即可,(3)利用函數(shù)f(x)的單調(diào)性,可得f(t)﹣f(t+1)≤1,利用換元法進(jìn)行轉(zhuǎn)化,結(jié)合對勾函數(shù)的單調(diào)性進(jìn)行求解即可.
【考點(diǎn)精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識點(diǎn),需要掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知y=f(x)(x∈R)是偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2﹣2x.
(1)求f(x)的解析式;
(2)若不等式f(x)≥mx在1≤x≤2時(shí)都成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為增強(qiáng)市民的節(jié)能環(huán)保意識,某市面向全市征召義務(wù)宣傳志愿者.從符合條件的500名志愿者中隨機(jī)抽取100名志愿者,其年齡頻率分布直方圖如圖所示,

(1)求圖中 的值并根據(jù)頻率分布直方圖估計(jì)這500名志愿者中年齡在 歲的人數(shù);
(2)在抽出的100名志愿者中按年齡采用分層抽樣的方法抽取20名參加中心廣場的宣傳活動,再從這20名中采用簡單隨機(jī)抽樣方法選取3名志愿者擔(dān)任主要負(fù)責(zé)人.記這3名志愿者中“年齡低于35歲”的人數(shù)為 ,求 的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間的一臺機(jī)床生產(chǎn)出一批零件,現(xiàn)從中抽取8件,將其編為 ,…, ,測量其長度(單位: ),得到如表中數(shù)據(jù):

其中長度在區(qū)間內(nèi)的零件為一等品.

(1)從上述8個(gè)零件中,隨機(jī)抽取一個(gè),求這個(gè)零件為一等品的概率;

(2)從一等品零件中,隨機(jī)抽取3個(gè).

①用零件的編號列出所有可能的抽取結(jié)果;

②求這3個(gè)零件長度相等的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,已知,底面,且,的中點(diǎn),上,且.

1)求證:平面平面;

2)求證:平面;

3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一條光線從點(diǎn)(﹣2,﹣3)射出,經(jīng)y軸反射后與圓(x+3)2+(y﹣2)2=1相切,則反射光線所在直線的斜率為( )
A.﹣ 或﹣
B.﹣ 或﹣
C.﹣ 或﹣
D.﹣ 或﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E: 的左、右焦點(diǎn)分別為F1、F2 , 離心率 ,P為橢圓E上的任意一點(diǎn)(不含長軸端點(diǎn)),且△PF1F2面積的最大值為1.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知直x﹣y+m=0與橢圓E交于不同的兩點(diǎn)A,B,且線AB的中點(diǎn)不在圓 內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C的方程:x2+y2﹣2x﹣4y+m=0
(1)求m的取值范圍;
(2)圓C與直線x+2y﹣4=0相交于M,N兩點(diǎn),且OM⊥ON(O為坐標(biāo)原點(diǎn)),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知動圓S過定點(diǎn)P(﹣2 ),且與定圓Q:(x﹣2 2+y2=36相切,記動圓圓心S的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)曲線C與x軸,y軸的正半軸分別相交于A,B兩點(diǎn),點(diǎn)M,N為橢圓C上相異的兩點(diǎn),其中點(diǎn)M在第一象限,且直線AM與直線BN的斜率互為相反數(shù),試判斷直線MN的斜率是否為定值.如果是定值,求出這個(gè)值;如果不是定值,說明理由;
(3)在(2)條件下,求四邊形AMBN面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案