(1)求證:2n+2•3n+5n-4能被25整除.
(2)求證:
C
0
n
-
1
2
C
1
n
+
1
3
C
2
n
-
1
4
C
3
n
+…+(-1)n
1
n+1
C
n
n
=
1
n+1
分析:(1)用數(shù)學歸納法證明:①當n=1時,2n+2•3n+5n-4=8×3+5-4=25,能被25整除;②假設(shè)n=k時,2k+2•3k+5k-4能被25整除,由此導出當n=k+1時,2k+3•3k+1+5(k+1)-4能被25整除即可.
(2))由
1
r+1
C
r
n
=
1
r+1
n!
r!(n-r)!
=
1
n+1
C
r+1
n+1
,能夠證明
C
0
n
-
1
2
C
1
n
+
1
3
C
2
n
-
1
4
C
3
n
+…+(-1)n
1
n+1
C
n
n
=
1
n+1
解答:證明:(1)用數(shù)學歸納法證明:
①當n=1時,2n+2•3n+5n-4=8×3+5-4=25,能被25整除,成立;
②假設(shè)n=k時,成立,即2k+2•3k+5k-4能被25整除,
則當n=k+1時,2k+3•3k+1+5(k+1)-4=6(2k+2•3k)+5k+5-4
=(2k+2•3k+5k-4)+5(2k+2•3k)+5
=(2k+2•3k+5k-4)+20•6k+5,
∵2k+2•3k+5k-4能被5整除,20•6k+5能被25整除,
∴(2k+2•3k+5k-4)+20•6k+5能被25整除,即n=k+1時成立.
由①②知2n+2•3n+5n-4能被25整除.
(2)∵
1
r+1
C
r
n
=
1
r+1
n!
r!(n-r)!
=
1
n+1
×
(n+1)!
(r+1)!(n-r)!
=
1
n+1
C
r+1
n+1
,
C
0
n
-
1
2
C
1
n
+
1
3
C
2
n
-
1
4
C
3
n
+…+(-1)n
1
n+1
C
n
n

=
1
n+1
[
C
1
n+1
-
C
2
n+1
+
C
3
n+1
+…+(-1)nC
 
n+1
n+1
],
當n為奇數(shù)時,
C
1
n+1
-
C
2
n+1
+
C
3
n+1
+…+(-1)nC
 
n+1
n+1

=(
C
1
n+1
+
C
3
n+1
+…+
C
n
n+1
)-(
C
2
n+1
+
C
4
n+1
+…+
C
n+1
n+1

=
C
0
n+1
=1.
當n為偶數(shù)時,
C
1
n+1
-
C
2
n+1
+
C
3
n+1
+…+(-1)nC
 
n+1
n+1

=(
C
1
n+1
+
C
3
n+1
+…+
C
n+1
n+1
)+(
C
2
n+1
+
C
4
n+1
+…+C
C
n
n+1

=
C
0
n+1
=1.
1
n+1
[
C
1
n+1
-
C
2
n+1
+
C
3
n+1
+…+(-1)nC
 
n+1
n+1
]=
1
n+1

C
0
n
-
1
2
C
1
n
+
1
3
C
2
n
-
1
4
C
3
n
+…+(-1)n
1
n+1
C
n
n
=
1
n+1
點評:本題考查數(shù)學歸納法的應用,考查二項式定理的應用.解題時要認真審題,仔細分析組合數(shù)性質(zhì),注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,滿足Sn=2an-2n(n∈N*),
(1)求證數(shù)列{an+2}為等比數(shù)列;
(2)若數(shù)列{bn}滿足bn=log2(an+2),Tn為數(shù)列{
bn
an+2
}的前n項和,求證:Tn
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和為Sn,滿足an≠0,anSn+1-an+1Sn=2n-1an+1an,n∈N*
(1)求證Sn=2n-1an
(2)設(shè)bn=
anan+1
求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省蚌埠二中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

(1)求證:2n+2•3n+5n-4能被25整除.
(2)求證:

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年安徽省蚌埠二中高二(上)期中數(shù)學試卷(理科)(解析版) 題型:解答題

(1)求證:2n+2•3n+5n-4能被25整除.
(2)求證:

查看答案和解析>>

同步練習冊答案