【題目】給出下列五個命題:

①過點(-1,2)的直線方程一定可以表示為y-2=k(x+1)的形式(k∈R);

②過點(-1,2)且在x軸、y軸截距相等的直線方程是xy-1=0;

③過點M(-1,2)且與直線lAxByC=0(AB≠0)垂直的直線方程是B(x+1)+A(y-2)=0;

④設(shè)點M(-1,2)不在直線lAxByC=0(AB≠0)上,則過點M且與l平行的直線方程是A(x+1)+B(y-2)=0;

⑤點P(-1,2)到直線axya2a=0的距離不小于2.

以上命題中,正確的序號是________

【答案】④⑤

【解析】直線過點,但無法用表示,不正確;

過點且在軸截距相等的直線方程為,不正確;

與直線垂直的直線斜率為,則所求直線方程為,即,不正確;

與直線平行的直線斜率為,則所求直線方程為,即,正確;

到直線的距離當(dāng)且僅當(dāng)時取等號,正確。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為奇函數(shù),為實常數(shù).

(1)求的值;

(2)證明:在區(qū)間內(nèi)單調(diào)遞增;

(3)若對于區(qū)間上的每一個的值,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義在R上的函數(shù)f(x)滿足:y=f(x﹣1)的圖象關(guān)于(1,0)點對稱,且當(dāng)x≥0時恒有f(x﹣ )=f(x+ ),當(dāng)x∈[0,2)時,f(x)=ex﹣1,則f(2017)+f(﹣2016)=(
A.1﹣e
B.﹣1﹣e
C.e﹣1
D.e+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知α為銳角,且 ,函數(shù) ,數(shù)列{an}的首項a1=1,an+1=f(an).
(1)求函數(shù)f(x)的表達式;
(2)求證:數(shù)列{an+1}為等比數(shù)列;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點P(-1,2)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于

(1)求直線l的方程.

(2)求圓心在直線l上且經(jīng)過點M(2,1),N(4,-1)的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求經(jīng)過點A(-1,-2)且到原點距離為1的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某上市股票在30天內(nèi)每股的交易價格(元)與時間(天)組成有序?qū)?/span>,點落在右方圖象中的兩條線段上,該股票在30天內(nèi)(包括30天)的日交易量(萬股)與時間(天)的函數(shù)關(guān)系為: , ,

(1)根據(jù)提供的圖象,寫出該種股票每股的交易價格(元)與時間(天)所滿足的函數(shù)關(guān)系式;

(2)用(萬元)表示該股票日交易額,寫出關(guān)于的函數(shù)關(guān)系式,并求出這30天中第幾天日交易額最大,最大值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x+1|﹣|x﹣2|.
(1)求不等式f(x)≥1的解集;
(2)若不等式f(x)≥x2﹣x+m的解集非空,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

)求函數(shù)的定義域.

)判斷在定義域上的單調(diào)性,并用單調(diào)性定義證明你的結(jié)論.

)求函數(shù)的值域.

查看答案和解析>>

同步練習(xí)冊答案