【題目】大西洋鮭魚每年都要逆流而上,游回產(chǎn)地產(chǎn)卵,研究鮭魚的科學(xué)家發(fā)現(xiàn)鮭魚的游速單位: 與其耗氧量單位數(shù)之間的關(guān)系可以表示為函數(shù)其中為常數(shù),已知一條鮭魚在靜止時的耗氧量為100個單位;而當(dāng)它的游速為時,其耗氧量為2700個單位.

1)求出游速與其耗氧量單位數(shù)之間的函數(shù)解析式;

(2)求當(dāng)一條鮭魚的游速不高于時,其耗氧量至多需要多少個單位?

【答案】(1), ;(224300

【解析】試題分析 :(1)由,可得, .

2)由題,解得: ,故其耗氧量至多需要24300個單位.

試題解析:(1)由題意,得

解得: , .

∴游速與其耗氧量單位數(shù)之間的函數(shù)解析式為.

2)由題意,有,,

由對數(shù)函數(shù)的單調(diào)性,有,解得: ,

∴當(dāng)一條鮭魚的游速不高于時,其耗氧量至多需要24300個單位.

點(diǎn)晴:解決函數(shù)模型應(yīng)用的解答題,還有以下幾點(diǎn)容易造成失分:①讀不懂實(shí)際背景,不能將實(shí)際問題轉(zhuǎn)化為函數(shù)模型.②對涉及的相關(guān)公式,記憶錯誤.③在求解的過程中計算錯誤.另外需要熟練掌握求解方程、不等式、函數(shù)最值的方法,才能快速正確地求解.含有絕對值的問題突破口在于分段去絕對值,分段后在各段討論最值的情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), ,設(shè)其中表示中的較小者.

(1)在坐標(biāo)系中畫出函數(shù)的圖像;

(2)設(shè)函數(shù)的最大值為,試判斷與1的大小關(guān)系,并說明理由.

(參考數(shù)據(jù): , ,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解適齡公務(wù)員對開放生育二胎政策的態(tài)度,某部門隨機(jī)調(diào)查了90位三十歲到四十歲的公務(wù)員,得到如下列聯(lián)表,因不慎丟失部分?jǐn)?shù)據(jù).
(1)完成表格數(shù)據(jù),判斷是否有99%以上的把握認(rèn)為“生二胎意愿與性別有關(guān)”并說明理由;
(2)已知15位有意愿生二胎的女性公務(wù)員中有兩位來自省婦聯(lián),該部門打算從這15位有意愿生二胎的女性公務(wù)員中隨機(jī)邀請兩位來參加座談,設(shè)邀請的2人中來自省婦聯(lián)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).

男性公務(wù)員

女性公務(wù)員

總計

有意愿生二胎

15

45

無意愿生二胎

25

總計

P(k2≥k0

0.050

0.010

0.001

k0

3.841

6.635

10.828

附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高二年級期末考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[40,50),[50,60),…,[90,100]后得到如下頻率分布表.根據(jù)相關(guān)信息回答下列問題:

(1)求a,b的值,并畫出頻率分布直方圖;
(2)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點(diǎn)值作為代表,據(jù)此估計本次考試的平均分;
(3)用分層抽樣的方法在分?jǐn)?shù)在[60,80)內(nèi)學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人的分?jǐn)?shù)在[70,80)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={1,3,5,7},B={x|(2x﹣1)(x﹣5)>0},則A∩(RB)( )
A.{1,3}
B.{1,3,5}
C.{3,5}
D.{3,5,7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了普及環(huán)保知識,增強(qiáng)環(huán)保意識,某校從理科甲班抽取60人,從文科乙班抽取50人參加環(huán)保知識測試.
(Ⅰ)根據(jù)題目條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認(rèn)為環(huán)保知識成績優(yōu)秀與學(xué)生的文理分類有關(guān).

優(yōu)秀人數(shù)

非優(yōu)秀人數(shù)

總計

甲班

乙班

30

總計

60

(Ⅱ)現(xiàn)已知A,B,C三人獲得優(yōu)秀的概率分別為 ,設(shè)隨機(jī)變量X表示A,B,C三人中獲得優(yōu)秀的人數(shù),求X的分布列及期望E(X).
附: ,n=a+b+c+d

P(K2>k0

0.100

0.050

0.025

0.010

0.005

k0

2.706

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品的市場需求量(萬件)、市場供應(yīng)量(萬件)與市場價格(元/件)分別近似地滿足下列關(guān)系: .當(dāng)時的市場價格稱為市場平衡價格,此時的需求量稱為平衡需求量.

(1)求平衡價格和平衡需求量;

(2)若該商品的市場銷售量(萬件)是市場需求量和市場供應(yīng)量兩者中的較小者,該商品的市場銷售額(萬元)等于市場銷售量與市場價格的乘積.

①當(dāng)市場價格取何值時,市場銷售額取得最大值;

②當(dāng)市場銷售額取得最大值時,為了使得此時的市場價格恰好是新的市場平衡價格,則政府應(yīng)該對每件商品征稅多少元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù)

(Ⅰ)求值;

(Ⅱ)判斷并證明該函數(shù)在定義域上的單調(diào)性;

(Ⅲ)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(Ⅳ)設(shè)關(guān)于的函數(shù)有零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 ,函數(shù).

(1)求在區(qū)間上的最大值和最小值;

(2)若 ,的值

3)若函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案