在直角坐標(biāo)平面中,已知點(diǎn)P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整數(shù).對(duì)平面上任一點(diǎn)A0,記A1為A0關(guān)于點(diǎn)P1的對(duì)稱點(diǎn),A2為A1關(guān)于點(diǎn)P2的對(duì)稱點(diǎn),…,An為An-1關(guān)于點(diǎn)Pn的對(duì)稱點(diǎn).
(1)求向量
A0A2
的坐標(biāo);
(2)當(dāng)點(diǎn)A0在曲線C上移動(dòng)時(shí),點(diǎn)A2的軌跡是函數(shù)y=f(x)的圖象,其中f(x)是以3位周期的周期函數(shù),且當(dāng)x∈(0,3]時(shí),f(x)=lgx.求以曲線C為圖象的函數(shù)在(1,4]上的解析式;
(3)對(duì)任意偶數(shù)n,用n表示向量
A0An
的坐標(biāo).
分析:(1)利用中點(diǎn)坐標(biāo)公式求出點(diǎn)A1,A2的坐標(biāo),再利用向量的坐標(biāo)公式求出
A0A2
的坐標(biāo).
(2)由已知判斷出y=f(x)的圖象是由C按
A0A2
平移得到的;得到C是由f(x)左移兩個(gè)單位,下移4個(gè)單位得到,利用圖象變換求出C的解析式.
(3)利用向量的運(yùn)算法則將
A0An
有以Pn為起點(diǎn)終點(diǎn)的向量表示,利用向量的坐標(biāo)公式求出各向量的坐標(biāo),利用等比數(shù)列的前n項(xiàng)和公式求出向量的坐標(biāo).
解答:解:(1)設(shè)點(diǎn)A0(x,y),A1為A0關(guān)于點(diǎn)P1的對(duì)稱點(diǎn),A1的坐標(biāo)為(2-x,4-y),
A1為P2關(guān)于點(diǎn)的對(duì)稱點(diǎn)A2的坐標(biāo)為(2+x,4+y),
A0A2
={2,4}.
(2)∵
A0A2
={2,4},
∴f(x)的圖象由曲線C向右平移2個(gè)單位,再向上平移4個(gè)單位得到.
因此,設(shè)曲線C是函數(shù)y=g(x)的圖象,
其中g(shù)(x)是以3為周期的周期函數(shù),
且當(dāng)x∈(-2,1]時(shí),g(x)=lg(x+2)-4.
于是,當(dāng)x∈(1,4]時(shí),g(x)=lg(x-1)-4.
(3)
A0An
=
A0A2
+
A2A4
+…+
An-2An
,
由于
A2k-2A2k
=2
P2k-1P2k
,得
A0An
=2(
P1P2
+
P3P4
+…+
Pn-1Pn

=2({1,2}+{1,23}+…+{1,2n-1})=2{
n
2
,
2(2n-1)
3
}={n,
4(2n-1)
3
}
點(diǎn)評(píng):本題考查中點(diǎn)坐標(biāo)公式、向量的坐標(biāo)公式、圖象的平移變換、等比數(shù)列的前n項(xiàng)和公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面中,已知點(diǎn)P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整數(shù),對(duì)平面上任一點(diǎn)A0,記A1為A0關(guān)于點(diǎn)P1的對(duì)稱點(diǎn),A2為A1關(guān)于點(diǎn)P2的對(duì)稱點(diǎn),…,An為An-1關(guān)于點(diǎn)Pn的對(duì)稱點(diǎn).
(1)求向量
A0A2
的坐標(biāo);
(2)當(dāng)點(diǎn)A0在曲線C上移動(dòng)時(shí),點(diǎn)A2的軌跡是函數(shù)y=f(x)的圖象,其中f(x)是以3為周期的周期函數(shù),且當(dāng)x∈(0,3]時(shí),f(x)=lgx.求以曲線C為圖象的函數(shù)在(1,4]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角坐標(biāo)平面中,已知點(diǎn)P(0,1),Q(2,3),對(duì)平面上任意一點(diǎn)B0,記B1為B0關(guān)于P的對(duì)稱點(diǎn),B2為B1關(guān)于Q的對(duì)稱點(diǎn),B3為B2關(guān)于P的對(duì)稱點(diǎn),B4為B3關(guān)于Q的對(duì)稱點(diǎn),…,Bi為Bi-1關(guān)于P的對(duì)稱點(diǎn),Bi+1為Bi關(guān)于Q的對(duì)稱點(diǎn),Bi+2為Bi+1關(guān)于P的對(duì)稱點(diǎn)(i≥1,i∈N)….則
B0B10
=
(20,20)
(20,20)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008-2009學(xué)年上海市虹口區(qū)北郊高級(jí)中學(xué)高三(上)摸底數(shù)學(xué)試卷(解析版) 題型:解答題

在直角坐標(biāo)平面中,已知點(diǎn)P1(1,2),P2(2,22),P3(3,23),…,Pn(n,2n),其中n是正整數(shù),對(duì)平面上任一點(diǎn)A,記A1為A關(guān)于點(diǎn)P1的對(duì)稱點(diǎn),A2為A1關(guān)于點(diǎn)P2的對(duì)稱點(diǎn),…,An為An-1關(guān)于點(diǎn)Pn的對(duì)稱點(diǎn).
(1)求向量的坐標(biāo);
(2)當(dāng)點(diǎn)A在曲線C上移動(dòng)時(shí),點(diǎn)A2的軌跡是函數(shù)y=f(x)的圖象,其中f(x)是以3為周期的周期函數(shù),且當(dāng)x∈(0,3]時(shí),f(x)=lgx.求以曲線C為圖象的函數(shù)在(1,4]上的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三上學(xué)期期中考試數(shù)學(xué)文卷 題型:填空題

在直角坐標(biāo)平面中,已知點(diǎn),,對(duì)平面上任意一點(diǎn),記關(guān)于的對(duì)稱點(diǎn),關(guān)于的對(duì)稱點(diǎn),關(guān)于的對(duì)稱點(diǎn),關(guān)于的對(duì)稱點(diǎn),…,關(guān)于的對(duì)稱點(diǎn),關(guān)于的對(duì)稱點(diǎn),關(guān)于的對(duì)稱點(diǎn)…。則       

 

查看答案和解析>>

同步練習(xí)冊(cè)答案