【題目】已知橢圓: ()的離心率為,直線: 與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)過橢圓的左頂點(diǎn)作直線,與圓相交于兩點(diǎn), ,若是鈍角三角形,求直線的斜率的取值范圍.
【答案】(1)(2),且
【解析】試題分析:(1)先由離心率為,求出的關(guān)系,再利用直線 與以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓相切,求出即可求出橢圓的方程;(2)先設(shè)出的坐標(biāo),利用是鈍角三角形,可得,即,聯(lián)立方程寫出韋達(dá)定理代入,從而求得斜率的取值范圍.
試題解析:(1)由,得,
由直線 與圓相切,得所以, ,
所以橢圓的方程是.
(2)由(1),得圓的方程是, ,直線的方程是
設(shè), ,由得
則, .
由,得.①
因?yàn)?/span>是鈍角三角形,所以,即
所以.②
由, 與軸不共線,知.③
由①、②、③,得直線的斜率的取值范圍是,且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的內(nèi)角,,的對邊分別為,,,且滿足.
(Ⅰ)求角;
(Ⅱ)向量,,若函數(shù)的圖象關(guān)于直線對稱,求角、.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,E,F是AD上互異的兩點(diǎn),G,H是BC上互異的兩點(diǎn),由圖可知,①AB與CD互為異面直線;②FH分別與DC,DB互為異面直線;③EG與FH互為異面直線;④EG與AB互為異面直線.其中敘述正確的是 ( )
A. ①③ B. ②④ C. ①④ D. ①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)在處的切線為.
(1)求的解析式.
(2)若對任意,有成立,求實(shí)數(shù)的取值范圍.
(3)證明:對任意成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中錯(cuò)誤的是( )
A. 如果平面外的直線不平行于平面,則平面內(nèi)不存在與平行的直線
B. 如果平面平面,平面平面, ,那么直線平面
C. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面
D. 一條直線與兩個(gè)平行平面中的一個(gè)平面相交,則必與另一個(gè)平面相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小王、小李兩位同學(xué)玩擲骰子(骰子質(zhì)地均勻)游戲,規(guī)則:小王先擲一枚骰子,向上的點(diǎn)數(shù)記為x;小李后擲一枚骰子,向上的點(diǎn)數(shù)記為y,
(1)在直角坐標(biāo)系xOy中,以(x,y)為坐標(biāo)的點(diǎn)共有幾個(gè)?試求點(diǎn)(x,y)落在直線x+y=7上的概率;
(2)規(guī)定:若x+y≥10,則小王贏;若x+y≤4,則小李贏,其他情況不分輸贏.試問這個(gè)游戲規(guī)則公平嗎?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),在點(diǎn)處的切線方程為.
(1)求的解析式;
(2)求的單調(diào)區(qū)間;
(3)若函數(shù)在定義域內(nèi)恒有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】成等差數(shù)列的三個(gè)正數(shù)的和等于15,并且這三個(gè)數(shù)分別加上2、5、13后成為等比數(shù)列{bn}中的b3、b4、b5.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)數(shù)列{bn}的前n項(xiàng)和為Sn,求證:數(shù)列是等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】上半年產(chǎn)品產(chǎn)量與單位成本資料如下:
月份 | 產(chǎn)量/千件 | 單位成本/元 |
1 | 2 | 73 |
2 | 3 | 72 |
3 | 4 | 71 |
4 | 3 | 73 |
5 | 4 | 69 |
6 | 5 | 68 |
且已知產(chǎn)量x與單位成本y具有線性相關(guān)關(guān)系.
(1)求出回歸方程.
(2)指出產(chǎn)量每增加1 000件時(shí),單位成本平均變動多少?
(3)假定產(chǎn)量為6 000件時(shí),單位成本為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com