【題目】已知函數(shù)g(x)=a﹣x2 ≤x≤e,e為自然對(duì)數(shù)的底數(shù))與h(x)=2lnx的圖象上存在關(guān)于x軸對(duì)稱的點(diǎn),則實(shí)數(shù)a的取值范圍是( )
A.[1, +2]
B.[1,e2﹣2]
C.[ +2,e2﹣2]
D.[e2﹣2,+∞)

【答案】B
【解析】解:由已知,得到方程a﹣x2=﹣2lnx﹣a=2lnx﹣x2 上有解.
設(shè)f(x)=2lnx﹣x2 , 求導(dǎo)得:f′(x)= ﹣2x= ,
≤x≤e,∴f′(x)=0在x=1有唯一的極值點(diǎn),
∵f( )=﹣2﹣ ,f(e)=2﹣e2 , f(x)極大值=f(1)=﹣1,且知f(e)<f( ),
故方程﹣a=2lnx﹣x2 上有解等價(jià)于2﹣e2≤﹣a≤﹣1.
從而a的取值范圍為[1,e2﹣2].
故選B.
由已知,得到方程a﹣x2=﹣2lnx﹣a=2lnx﹣x2 上有解,構(gòu)造函數(shù)f(x)=2lnx﹣x2 , 求出它的值域,得到﹣a的范圍即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中, ,點(diǎn)D在線段BC上.
(1)當(dāng)BD=AD時(shí),求 的值;
(2)若AD是∠A的平分線, ,求△ADC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P為函數(shù)y=2lnx的圖像與圓M:(x﹣3)2+y2=r2的公共點(diǎn),且它們?cè)邳c(diǎn)P處有公切線,若二次函數(shù)y=f(x)的圖像經(jīng)過點(diǎn)O,P,M,則y=f(x)的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2
(1)求f(x)的單調(diào)遞增區(qū)間;
(2)把y=f(x)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),再把得到的圖象向左平移 個(gè)單位,得到函數(shù)y=g(x)的圖象,求g( )的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C的對(duì)邊分別是a,b,c, ,
(Ⅰ)求邊c的值;
(Ⅱ) 若 ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是直角梯形,側(cè)棱SA⊥底面ABCD,AB垂直于AD和BC,SA=AB=BC=2,AD=1.M是棱SB的中點(diǎn).
(Ⅰ)求證:AM∥面SCD;
(Ⅱ)求面SCD與面SAB所成二面角的余弦值;
(Ⅲ)設(shè)點(diǎn)N是直線CD上的動(dòng)點(diǎn),MN與面SAB所成的角為θ,求sinθ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為得到函數(shù)y=2cos2x﹣ sin2x的圖象,只需將函數(shù)y=2sin2x+1的圖象(
A.向左平移 個(gè)長(zhǎng)度單位
B.向右平移 個(gè)長(zhǎng)度單位
C.向左平移 個(gè)長(zhǎng)度單位
D.向右平移 個(gè)長(zhǎng)度單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合Rn={X|X=(x1 , x2 , …,xn),xi∈{0,1},i=1,2,…,n}(n≥2).對(duì)于A=(a1 , a2 , …,an)∈Rn , B=(b1 , b2 , …,bn)∈Rn , 定義A與B之間的距離為d(A,B)=|a1﹣b1|+|a2﹣b2|+…|an﹣bn|=
(Ⅰ)寫出R2中的所有元素,并求兩元素間的距離的最大值;
(Ⅱ)若集合M滿足:MR3 , 且任意兩元素間的距離均為2,求集合M中元素個(gè)數(shù)的最大值并寫出此時(shí)的集合M;
(Ⅲ)設(shè)集合PRn , P中有m(m≥2)個(gè)元素,記P中所有兩元素間的距離的平均值為 ,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一塊耕地上種植一種作物,每季種植成本為1000元,此作物的市場(chǎng)價(jià)格和這塊地上的產(chǎn)量均具有隨機(jī)性,且互不影響,其具體情況如下表:

作物產(chǎn)量(kg)

300

500

概率

0.5

0.5

作物市場(chǎng)價(jià)格(元/kg)

6

10

概率

0.4

0.6


(1)設(shè)X表示在這塊地上種植1季此作物的利潤(rùn),求X的分布列;
(2)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤(rùn)不少于2000元的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案