如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B),其中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次轉(zhuǎn)動(dòng)無(wú)效,重新開(kāi)始)為一次游戲,記轉(zhuǎn)盤(pán)(A)指針?biāo)鶎?duì)的數(shù)為X轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎(jiǎng)勵(lì)分為ξ分.
(1)求X<2且Y>1時(shí)的概率
(2)某人玩12次游戲,求他平均可以得到多少獎(jiǎng)勵(lì)分?

【答案】分析:(1)由幾何概型知P(x=1)=,P(x=2)=,P(x=3)=; P(y=1)=,P(y=2)=,P(y=3)=.進(jìn)而得到P(x<2)=P(x=1)=,P(y>1)=p(y=2)+P(y=3)=,利用獨(dú)立事件的概率計(jì)算公式可得:P(x<2且y>1)=P(x<2)•P(y>1)=
(2)ξ的取值范圍為2,3,4,6.利用事件的獨(dú)立性和互斥事件的概率計(jì)算公式可得P(ξ=2)=P(x=1)•P(y=1);P(ξ=3)=P(x=1)•P(y=2)+P(x=2)•P(y=1);P(ξ=4)=P(x=1)•P(y=3)+P(x=2)•P(y=2)+P(x=3)•P(y=1);P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2);P(ξ=6)=P(x=3)•P(y=3).進(jìn)而得到分布列.利用數(shù)學(xué)期望的計(jì)算公式即可得出Eξ,所以,他玩12次平均可以得到的獎(jiǎng)勵(lì)分為12×Eξ.
解答:解:(1)由幾何概型知P(x=1)=,P(x=2)=,P(x=3)=; P(y=1)=,P(y=2)=,P(y=3)=
則P(x<2)=P(x=1)=,P(y>1)=p(y=2)+P(y=3)=
P(x<2且y>1)=P(x<2)•P(y>1)=
(2)ξ的取值范圍為2,3,4,6.
P(ξ=2)=P(x=1)•P(y=1)=
P(ξ=3)=P(x=1)•P(y=2)+P(x=2)•P(y=1)==;
P(ξ=4)=P(x=1)•P(y=3)+P(x=2)•P(y=2)+P(x=3)•P(y=1)=++=;
P(ξ=5)=P(x=2)P(y=3)+P(x=3)P(y=2)==;
P(ξ=6)=P(x=3)•P(y=3)==
其分布為:
ξ23456

P



他平均每次可得到的獎(jiǎng)勵(lì)分為
Eξ=2×+3×+4×+5×+6×=
所以,他玩12次平均可以得到的獎(jiǎng)勵(lì)分為12×Eξ=50.
點(diǎn)評(píng):熟練掌握幾何概型、獨(dú)立事件、互斥事件、分布列和數(shù)學(xué)期望是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B).兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)進(jìn)行玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不會(huì)動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次結(jié)果無(wú)效,重新開(kāi)始),記轉(zhuǎn)盤(pán)(A)指針對(duì)的數(shù)為x,轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為y.設(shè)x+y的值為ξ,每轉(zhuǎn)動(dòng)一次則得到獎(jiǎng)勵(lì)分ξ分.
(Ⅰ)求x<2且y>1的概率;
(Ⅱ) 某人玩12次,求他平均可以得到多少獎(jiǎng)勵(lì)分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B),其中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次轉(zhuǎn)動(dòng)無(wú)效,重新開(kāi)始)為一次游戲,記轉(zhuǎn)盤(pán)(A)指針?biāo)鶎?duì)的數(shù)為X轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為Y設(shè)X+Yξ,每次游戲得到的獎(jiǎng)勵(lì)分為ξ分.
(1)求X<2且Y>1時(shí)的概率
(2)某人玩12次游戲,求他平均可以得到多少獎(jiǎng)勵(lì)分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:廣東省同步題 題型:解答題

如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B).兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)進(jìn)行玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不會(huì)動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次結(jié)果無(wú)效,重新開(kāi)始),記轉(zhuǎn)盤(pán)(A)指針對(duì)的數(shù)為x,轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為y.設(shè)x+y的值為ξ,每轉(zhuǎn)動(dòng)一次則得到獎(jiǎng)勵(lì)分ξ分.
(Ⅰ)求x<2且y>1的概率;
(Ⅱ)某人玩12次,求他平均可以得到多少獎(jiǎng)勵(lì)分?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省外語(yǔ)外貿(mào)大學(xué)附設(shè)外語(yǔ)學(xué)校高三(上)數(shù)學(xué)寒假作業(yè)3(理科)(解析版) 題型:解答題

如圖所示,有兩個(gè)獨(dú)立的轉(zhuǎn)盤(pán)(A)、(B).兩個(gè)圖中三個(gè)扇形區(qū)域的圓心角分別為60°、120°、180°.用這兩個(gè)轉(zhuǎn)盤(pán)進(jìn)行玩游戲,規(guī)則是:依次隨機(jī)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤(pán)再隨機(jī)停下(指針固定不會(huì)動(dòng),當(dāng)指針恰好落在分界線時(shí),則這次結(jié)果無(wú)效,重新開(kāi)始),記轉(zhuǎn)盤(pán)(A)指針對(duì)的數(shù)為x,轉(zhuǎn)盤(pán)(B)指針對(duì)的數(shù)為y.設(shè)x+y的值為ξ,每轉(zhuǎn)動(dòng)一次則得到獎(jiǎng)勵(lì)分ξ分.
(Ⅰ)求x<2且y>1的概率;
(Ⅱ) 某人玩12次,求他平均可以得到多少獎(jiǎng)勵(lì)分?

查看答案和解析>>

同步練習(xí)冊(cè)答案