設(shè)函數(shù),若關(guān)于的方程上恰好有兩個(gè)相異實(shí)根,則實(shí)數(shù)的取值范圍為______________.

 

【答案】

【解析】

試題分析:方程f(x)=x2+x+a可化為x-a+1-ln(1+x)2=0,由于此方程為非基本方程,故求方程的根,可以轉(zhuǎn)化為求對(duì)應(yīng)函數(shù)的零點(diǎn)問題,利用導(dǎo)數(shù)法我們易構(gòu)造出滿足條件的不等式組,解不等式組即可得到實(shí)數(shù)a的取值范圍.解:若f(x)=x2+x+a,即(1+x)2-ln(1+x)2=x2+x+a,即x-a+1-ln(1+x)2=0,記g(x)=x-a+1-ln(1+x)2,則g'(x)=,令g'(x)>0,得x>1,或x<-1,令g'(x)<0,得-1<x<1,∴g(x)在[0,1]上單調(diào)遞減,在[1,2]上單調(diào)遞增;,若方程f(x)=x2+x+a在x∈[0,2]上恰好有兩個(gè)相異實(shí)根,則,g(0)≥0,g(1)<0,g(2)≥0,解得2-2ln2<a≤3-2ln3,故答案為:(2-2ln2,3-2ln3]

考點(diǎn):方程的根的分布

點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是方程的根的分布,其中利用方程的根與對(duì)應(yīng)函數(shù)之間的關(guān)系,將方程f(x)=x2+x+a在x∈[0,2]上恰好有兩個(gè)相異實(shí)根,轉(zhuǎn)化為對(duì)應(yīng)函數(shù)在區(qū)間∈[0,2]上恰好有兩個(gè)相異的零點(diǎn)是解答本題的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年重慶市高三上學(xué)期第十次測(cè)試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

設(shè)函數(shù),若關(guān)于的方程恰有5個(gè)不同的實(shí)數(shù)解,則等于     (    )

A.0            B.2lg2           C.3lg2           D.l

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廈門理工附中高二數(shù)學(xué)下學(xué)期3月份月考試卷 題型:選擇題

設(shè)函數(shù),若關(guān)于的方程有三個(gè)不同實(shí)根,則的取值范圍是(    )   

(A)        (B)   

(C)     (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012屆陜西省呂梁市高二第二學(xué)期期中考試數(shù)學(xué)理科試題 題型:填空題

設(shè)函數(shù),若關(guān)于的方程有三個(gè)不同實(shí)根,則的取值范圍是______________ 。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011年安徽省馬鞍山市高二下學(xué)期期中考試?yán)砜茢?shù)學(xué) 題型:填空題

設(shè)函數(shù),若關(guān)于的方程有三個(gè)不同實(shí)根,則的取值范圍是                 .

 

查看答案和解析>>

同步練習(xí)冊(cè)答案